File: module_integrity_verifier_win.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (412 lines) | stat: -rw-r--r-- 15,975 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chrome/browser/safe_browsing/incident_reporting/module_integrity_verifier_win.h"

#include <windows.h>

#include <psapi.h>
#include <stddef.h>

#include <algorithm>
#include <string>
#include <vector>

#include "base/files/file_path.h"
#include "base/files/memory_mapped_file.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/stack_allocated.h"
#include "base/metrics/histogram_functions.h"
#include "base/numerics/safe_conversions.h"
#include "base/scoped_native_library.h"
#include "base/strings/utf_string_conversions.h"
#include "base/win/pe_image.h"
#include "components/safe_browsing/core/common/proto/csd.pb.h"

namespace safe_browsing {

namespace {

// The maximum amount of bytes that can be reported as modified by VerifyModule.
constexpr size_t kMaxModuleModificationBytes = 256;

struct Export {
  Export(const void* addr, const std::string& name);
  ~Export();

  bool operator<(const Export& other) const {
    return addr < other.addr;
  }

  raw_ptr<const void> addr;
  std::string name;
};

Export::Export(const void* addr, const std::string& name)
    : addr(addr), name(name) {}

Export::~Export() = default;

struct ModuleVerificationState {
  STACK_ALLOCATED();

 public:
  explicit ModuleVerificationState(HMODULE hModule);

  ModuleVerificationState(const ModuleVerificationState&) = delete;
  ModuleVerificationState& operator=(const ModuleVerificationState&) = delete;

  ~ModuleVerificationState();

  base::win::PEImageAsData disk_peimage;

  // The module's preferred base address minus the base address it actually
  // loaded at.
  intptr_t image_base_delta;

  // The location of the disk_peimage module's code section minus that of the
  // mem_peimage module's code section.
  intptr_t code_section_delta;

  // Set true if the relocation table contains a reloc of type that we don't
  // currently handle.
  bool unknown_reloc_type;

  // The code section of the in-memory binary.
  base::span<const uint8_t> mem_code_data;

  // The code section of the on-disk binary.
  base::span<const uint8_t> disk_code_data;

  // The exports of the DLL, sorted by address in ascending order.
  std::vector<Export> exports;

  // Remaining data in the in-memory binary after the latest reloc encountered
  // by |EnumRelocsCallback|.
  base::span<const uint8_t> mem_relocs_remaining;

  // Remaining data in the on-disk binary after the latest reloc encountered by
  // |EnumRelocsCallback|.
  base::span<const uint8_t> disk_relocs_remaining;

  // The number of bytes with a different value on disk and in memory, as
  // computed by |VerifyModule|.
  int bytes_different;

  // The module state protobuf object that |VerifyModule| will populate.
  ClientIncidentReport_EnvironmentData_Process_ModuleState* module_state;
};

ModuleVerificationState::ModuleVerificationState(HMODULE hModule)
    : disk_peimage(hModule),
      image_base_delta(0),
      code_section_delta(0),
      unknown_reloc_type(false),
      mem_code_data(),
      disk_code_data(),
      mem_relocs_remaining(),
      disk_relocs_remaining(),
      bytes_different(0),
      module_state(nullptr) {}

ModuleVerificationState::~ModuleVerificationState() = default;

// Find which export a modification at address |mem_address| is in. Looks for
// the largest export address still smaller than |mem_address|. |start| and
// |end| must come from a sorted collection.
std::vector<Export>::const_iterator FindModifiedExport(
    const uint8_t* mem_address,
    std::vector<Export>::const_iterator start,
    std::vector<Export>::const_iterator end) {
  // We get the largest export address still smaller than |addr|.  It is
  // possible that |addr| belongs to some nonexported function located
  // between this export and the following one.
  Export addr(reinterpret_cast<const void*>(mem_address), std::string());
  return std::upper_bound(start, end, addr);
}

// Checks each byte in a subsection of the module's code section against the
// corresponding byte on disk, returning the number of bytes differing between
// the two. |state.exports| must be sorted.
int ExamineByteRangeDiff(base::span<const uint8_t> disk_data,
                         base::span<const uint8_t> mem_data,
                         ModuleVerificationState* state) {
  CHECK_EQ(disk_data.size(), mem_data.size());

  int bytes_different = 0;
  std::vector<Export>::const_iterator export_it = state->exports.begin();
  const auto disk_end = disk_data.end();

  for (auto disk_it = disk_data.begin(), mem_it = mem_data.begin();
       disk_it != disk_end; ++disk_it, ++mem_it) {
    if (*disk_it == *mem_it) {
      continue;
    }

    auto* modification = state->module_state->add_modification();
    // Store the address at which the modification starts on disk, relative to
    // the beginning of the image.
    modification->set_file_offset(
        base::to_address(disk_it) -
        reinterpret_cast<uint8_t*>(state->disk_peimage.module()));

    // Find the export containing this modification.
    std::vector<Export>::const_iterator modified_export_it = FindModifiedExport(
        base::to_address(mem_it), export_it, state->exports.end());
    // No later byte can belong to an earlier export.
    export_it = modified_export_it;
    if (modified_export_it != state->exports.begin())
      modification->set_export_name((modified_export_it - 1)->name);

    auto range_start = mem_it;
    while (disk_it != disk_end && *disk_it != *mem_it) {
      ++disk_it;
      ++mem_it;
    }

    size_t bytes_in_modification = mem_it - range_start;
    bytes_different += bytes_in_modification;
    modification->set_byte_count(bytes_in_modification);
    base::span<const uint8_t> modification_data = mem_data.subspan(
        static_cast<size_t>(range_start - mem_data.begin()),
        std::min(bytes_in_modification, kMaxModuleModificationBytes));
    modification->set_modified_bytes(modification_data.data(),
                                     modification_data.size());

    if (disk_it == disk_end) {
      break;
    }
  }
  return bytes_different;
}

bool AddrIsInCodeSection(void* address,
                         base::span<const uint8_t> code_section) {
  return base::to_address(code_section.begin()) <= address &&
         address < base::to_address(code_section.end());
}

bool EnumRelocsCallback(const base::win::PEImage& mem_peimage,
                        WORD type,
                        void* address,
                        void* cookie) {
  ModuleVerificationState* state =
      reinterpret_cast<ModuleVerificationState*>(cookie);

  // If not in the code section return true to continue to the next reloc.
  if (!AddrIsInCodeSection(address, state->mem_code_data)) {
    return true;
  }

  switch (type) {
    case IMAGE_REL_BASED_ABSOLUTE:  // 0
      break;
    case IMAGE_REL_BASED_HIGHLOW:  // 3
      {
        // The range to inspect is from the last reloc to the current one at
        // |ptr|
        uint8_t* ptr = reinterpret_cast<uint8_t*>(address);

        // If the last relocation was not before this one in the binary,
        // there's an issue in the reloc section. We can't really recover from
        // that so flag state as such so the error can be logged.
        if (ptr < base::to_address(state->mem_relocs_remaining.begin())) {
          return false;
        }

        // Check which bytes of the relocation are not accounted for by the
        // rebase. If the beginning of the relocation is modified by something
        // other than the rebase, extend the verification range to include those
        // bytes since they are considered part of a modification.
        uint32_t relocated = *reinterpret_cast<uint32_t*>(ptr);
        uint32_t original = relocated + state->image_base_delta;
        base::span<const uint8_t> original_reloc_bytes =
            base::byte_span_from_ref(original);

        // Cast to intprt_t to allow arithmetic on the pointers
        ptrdiff_t disk_reloc_offset =
            state->code_section_delta + reinterpret_cast<intptr_t>(address) -
            reinterpret_cast<intptr_t>(
                base::to_address(state->disk_code_data.begin()));
        base::span<const uint8_t>::iterator reloc_disk_position =
            state->disk_code_data.begin() + disk_reloc_offset;

        size_t unaccounted_reloc_bytes = 0;
        while (unaccounted_reloc_bytes < sizeof(uint32_t) &&
               original_reloc_bytes[unaccounted_reloc_bytes] !=
               reloc_disk_position[unaccounted_reloc_bytes]) {
          ++unaccounted_reloc_bytes;
        }

        // If the entire reloc was modified, return true to let the next
        // EnumReloc track it as part of a larger modification.
        if (unaccounted_reloc_bytes == sizeof(uint32_t))
          return true;

        size_t range_size = base::checked_cast<size_t>(
            ptr - base::to_address(state->mem_relocs_remaining.begin()) +
            unaccounted_reloc_bytes);

        state->bytes_different += ExamineByteRangeDiff(
            state->disk_relocs_remaining.first(range_size),
            state->mem_relocs_remaining.first(range_size), state);

        // Starting after the verified range, check if the relocation ends with
        // modified bytes. If it does, include them in the following range to be
        // verified as they're considered modified. Otherwise, the following
        // range will start right after the current reloc.
        size_t unmodified_reloc_byte_count = unaccounted_reloc_bytes;
        while (unmodified_reloc_byte_count < sizeof(uint32_t) &&
               original_reloc_bytes[unmodified_reloc_byte_count] ==
               reloc_disk_position[unmodified_reloc_byte_count]) {
          ++unmodified_reloc_byte_count;
        }
        state->disk_relocs_remaining = state->disk_relocs_remaining.subspan(
            range_size + unmodified_reloc_byte_count);
        state->mem_relocs_remaining = state->mem_relocs_remaining.subspan(
            range_size + unmodified_reloc_byte_count);
      }
      break;
    case IMAGE_REL_BASED_DIR64:  // 10
      break;
    default:
      // TODO(robertshield): Find a reliable description of the behaviour of the
      // remaining types of relocation and handle them.
      state->unknown_reloc_type = true;
      break;
  }
  return true;
}

bool EnumExportsCallback(const base::win::PEImage& mem_peimage,
                         DWORD ordinal,
                         DWORD hint,
                         LPCSTR name,
                         PVOID function_addr,
                         LPCSTR forward,
                         PVOID cookie) {
  std::vector<Export>* exports = reinterpret_cast<std::vector<Export>*>(cookie);
  if (name)
    exports->push_back(Export(function_addr, std::string(name)));
  return true;
}

}  // namespace

bool GetCodeSpans(const base::win::PEImage& mem_peimage,
                  base::span<const uint8_t> disk_peimage,
                  base::span<const uint8_t>& mem_code_data,
                  base::span<const uint8_t>& disk_code_data) {
  DWORD base_of_code = mem_peimage.GetNTHeaders()->OptionalHeader.BaseOfCode;

  // Get the address and size of the code section in the loaded module image.
  PIMAGE_SECTION_HEADER mem_code_header =
      mem_peimage.GetImageSectionFromAddr(mem_peimage.RVAToAddr(base_of_code));
  if (mem_code_header == NULL)
    return false;
  // If the section is padded with zeros when mapped then |VirtualSize| can be
  // larger.  Alternatively, |SizeOfRawData| can be rounded up to align
  // according to OptionalHeader.FileAlignment.
  size_t code_size = std::min(mem_code_header->Misc.VirtualSize,
                              mem_code_header->SizeOfRawData);
  // SAFETY: `mem_peimage` is the current PEImage loaded in memory. That
  // means its headers have already been validated and can be trusted.
  mem_code_data = UNSAFE_BUFFERS(
      base::span(reinterpret_cast<uint8_t*>(
                     mem_peimage.RVAToAddr(mem_code_header->VirtualAddress)),
                 code_size));

  // Get the address of the code section in the module mapped as data from disk.
  DWORD disk_code_offset = 0;
  if (!mem_peimage.ImageAddrToOnDiskOffset(
          const_cast<void*>(reinterpret_cast<const void*>(
              base::to_address(mem_code_data.begin()))),
          &disk_code_offset)) {
    return false;
  }

  disk_code_data = disk_peimage.subspan(disk_code_offset, code_size);

  return true;
}

bool VerifyModule(
    const wchar_t* module_name,
    ClientIncidentReport_EnvironmentData_Process_ModuleState* module_state,
    int* num_bytes_different) {
  using ModuleState = ClientIncidentReport_EnvironmentData_Process_ModuleState;
  *num_bytes_different = 0;
  module_state->set_name(base::WideToUTF8(module_name));
  module_state->set_modified_state(ModuleState::MODULE_STATE_UNKNOWN);

  // Get module handle, load a copy from disk as data and create PEImages.
  HMODULE module_handle = NULL;
  if (!GetModuleHandleEx(0, module_name, &module_handle))
    return false;
  base::ScopedNativeLibrary native_library(module_handle);

  WCHAR module_path[MAX_PATH] = {};
  DWORD length =
      GetModuleFileName(module_handle, module_path, std::size(module_path));
  if (!length || length == std::size(module_path))
    return false;

  base::MemoryMappedFile mapped_module;
  if (!mapped_module.Initialize(base::FilePath(module_path)))
    return false;
  ModuleVerificationState state(
      reinterpret_cast<HMODULE>(const_cast<uint8_t*>(mapped_module.data())));

  base::win::PEImage mem_peimage(module_handle);
  if (!mem_peimage.VerifyMagic() || !state.disk_peimage.VerifyMagic())
    return false;

  // Get the list of exports and sort them by address for efficient lookups.
  mem_peimage.EnumExports(EnumExportsCallback, &state.exports);
  std::sort(state.exports.begin(), state.exports.end());

  // Get the addresses of the code sections then calculate |code_section_delta|
  // and |image_base_delta|.
  if (!GetCodeSpans(mem_peimage, mapped_module.bytes(), state.mem_code_data,
                    state.disk_code_data)) {
    return false;
  }

  state.module_state = module_state;
  state.mem_relocs_remaining = state.mem_code_data;
  state.disk_relocs_remaining = state.disk_code_data;
  state.code_section_delta = base::to_address(state.disk_code_data.begin()) -
                             base::to_address(state.mem_code_data.begin());

  uint8_t* preferred_image_base = reinterpret_cast<uint8_t*>(
      state.disk_peimage.GetNTHeaders()->OptionalHeader.ImageBase);
  state.image_base_delta =
      preferred_image_base - reinterpret_cast<uint8_t*>(mem_peimage.module());

  // Enumerate relocations and verify the bytes between them.
  bool scan_complete = mem_peimage.EnumRelocs(EnumRelocsCallback, &state);
  if (scan_complete) {
    size_t range_size = state.mem_code_data.size() -
                        (base::to_address(state.mem_relocs_remaining.begin()) -
                         base::to_address(state.mem_code_data.begin()));
    // Inspect the last chunk spanning from the furthest relocation to the end
    // of the code section.
    state.bytes_different += ExamineByteRangeDiff(
        state.disk_relocs_remaining.first(range_size),
        state.mem_relocs_remaining.first(range_size), &state);
  }
  *num_bytes_different = state.bytes_different;

  // Report STATE_MODIFIED if any difference was found, regardless of whether or
  // not the entire module was scanned. Report STATE_UNMODIFIED only if the
  // entire module was scanned and understood.
  if (state.bytes_different)
    module_state->set_modified_state(ModuleState::MODULE_STATE_MODIFIED);
  else if (!state.unknown_reloc_type && scan_complete)
    module_state->set_modified_state(ModuleState::MODULE_STATE_UNMODIFIED);

  return scan_complete;
}

}  // namespace safe_browsing