1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/task_manager/sampling/shared_sampler.h"
#include <windows.h>
#include <winternl.h>
#include <algorithm>
#include "base/bit_cast.h"
#include "base/command_line.h"
#include "base/containers/heap_array.h"
#include "base/functional/bind.h"
#include "base/path_service.h"
#include "base/task/sequenced_task_runner.h"
#include "base/threading/platform_thread.h"
#include "base/time/time.h"
#include "chrome/browser/task_manager/sampling/shared_sampler_win_defines.h"
#include "chrome/browser/task_manager/task_manager_observer.h"
#include "chrome/common/chrome_constants.h"
#include "content/public/browser/browser_thread.h"
// ntstatus.h conflicts with windows.h so define this locally.
#define STATUS_SUCCESS ((NTSTATUS)0x00000000L)
#define STATUS_BUFFER_TOO_SMALL ((NTSTATUS)0xC0000023L)
#define STATUS_INFO_LENGTH_MISMATCH ((NTSTATUS)0xC0000004L)
namespace task_manager {
static SharedSampler::QuerySystemInformationForTest
g_query_system_information_for_test = nullptr;
// static
void SharedSampler::SetQuerySystemInformationForTest(
QuerySystemInformationForTest query_system_information) {
g_query_system_information_for_test = query_system_information;
}
namespace {
// Simple memory buffer wrapper for passing the data out of
// QuerySystemProcessInformation.
class ByteBuffer {
public:
explicit ByteBuffer(size_t capacity) {
if (capacity > 0) {
grow(capacity);
}
}
ByteBuffer(const ByteBuffer&) = delete;
ByteBuffer& operator=(const ByteBuffer&) = delete;
~ByteBuffer() = default;
base::span<BYTE> span() { return data_.as_span(); }
base::span<const BYTE> data_span() const { return data_.first(size_); }
void set_size(size_t new_size) {
DCHECK_LE(new_size, data_.size());
size_ = new_size;
}
void grow(size_t new_capacity) {
DCHECK_GT(new_capacity, data_.size());
auto new_data = base::HeapArray<BYTE>::Uninit(new_capacity);
new_data.copy_prefix_from(span());
data_ = std::move(new_data);
}
private:
base::HeapArray<BYTE> data_;
size_t size_ = 0;
};
// Wrapper for NtQuerySystemProcessInformation with buffer reallocation logic.
bool QuerySystemProcessInformation(ByteBuffer* buffer) {
HMODULE ntdll = ::GetModuleHandle(L"ntdll.dll");
if (!ntdll) {
NOTREACHED();
}
NTQUERYSYSTEMINFORMATION nt_query_system_information_ptr =
reinterpret_cast<NTQUERYSYSTEMINFORMATION>(
::GetProcAddress(ntdll, "NtQuerySystemInformation"));
if (!nt_query_system_information_ptr) {
NOTREACHED();
}
NTSTATUS result;
// There is a potential race condition between growing the buffer and new
// processes being created. Try a few times before giving up.
for (int i = 0; i < 10; i++) {
ULONG data_size = 0;
base::span<BYTE> span = buffer->span();
const ULONG buffer_size = static_cast<ULONG>(span.size());
if (g_query_system_information_for_test) {
data_size = g_query_system_information_for_test(span); // IN-TEST
result =
(data_size > buffer_size) ? STATUS_BUFFER_TOO_SMALL : STATUS_SUCCESS;
} else {
result = nt_query_system_information_ptr(
SystemProcessInformation, span.data(), buffer_size, &data_size);
}
if (result == STATUS_SUCCESS) {
buffer->set_size(data_size);
break;
}
if (result == STATUS_INFO_LENGTH_MISMATCH ||
result == STATUS_BUFFER_TOO_SMALL) {
// Insufficient buffer. Grow to the returned |data_size| plus 10% extra
// to avoid frequent reallocations and try again.
DCHECK_GT(data_size, buffer_size);
buffer->grow(static_cast<ULONG>(data_size * 1.1));
} else {
// An error other than the two above.
break;
}
}
return result == STATUS_SUCCESS;
}
// Per-thread data extracted from SYSTEM_THREAD_INFORMATION and stored in a
// snapshot. This structure is accessed only on the worker thread.
struct ThreadData {
// Don't use base::PlatformThreadId for thread id, because
// SYSTEM_THREAD_INFORMATION uses a HANDLE for the utid.
HANDLE thread_id;
ULONG context_switches;
};
// Per-process data extracted from SYSTEM_PROCESS_INFORMATION and stored in a
// snapshot. This structure is accessed only on the worker thread.
struct ProcessData {
ProcessData() = default;
ProcessData(const ProcessData&) = delete;
ProcessData& operator=(const ProcessData&) = delete;
ProcessData(ProcessData&&) = default;
int64_t hard_fault_count;
base::Time start_time;
base::TimeDelta cpu_time;
std::vector<ThreadData> threads;
};
typedef std::map<base::ProcessId, ProcessData> ProcessDataMap;
ULONG CountContextSwitchesDelta(const ProcessData& prev_process_data,
const ProcessData& new_process_data) {
// This one pass algorithm relies on the threads vectors to be
// ordered by thread_id.
ULONG delta = 0;
size_t prev_index = 0;
for (const auto& new_thread : new_process_data.threads) {
ULONG prev_thread_context_switches = 0;
// Iterate over the process threads from the previous snapshot skipping
// threads that don't exist anymore. Please note that this iteration starts
// from the last known prev_index and goes until a previous snapshot's
// thread ID >= the current snapshot's thread ID. So the overall algorithm
// is linear.
for (; prev_index < prev_process_data.threads.size(); ++prev_index) {
const auto& prev_thread = prev_process_data.threads[prev_index];
if (prev_thread.thread_id == new_thread.thread_id) {
// Threads match between two snapshots. Use the previous snapshot
// thread's context_switches to subtract from the delta.
prev_thread_context_switches = prev_thread.context_switches;
++prev_index;
break;
}
if (prev_thread.thread_id > new_thread.thread_id) {
// This is due to a new thread that didn't exist in the previous
// snapshot. Keep the zero value of |prev_thread_context_switches| which
// essentially means the entire number of context switches of the new
// thread will be added to the delta.
break;
}
}
delta += new_thread.context_switches - prev_thread_context_switches;
}
return delta;
}
// Seeks a matching ProcessData by Process ID in a previous snapshot.
// This uses the fact that ProcessDataMap entries are ordered by Process ID.
const ProcessData* SeekInPreviousSnapshot(
base::ProcessId process_id, ProcessDataMap::const_iterator* iter_to_advance,
const ProcessDataMap::const_iterator& range_end) {
for (; *iter_to_advance != range_end; ++(*iter_to_advance)) {
if ((*iter_to_advance)->first == process_id) {
return &((*iter_to_advance)++)->second;
}
if ((*iter_to_advance)->first > process_id)
break;
}
return nullptr;
}
// A wrapper function converting ticks (in units of 100 ns) to Time.
base::Time ConvertTicksToTime(uint64_t ticks) {
FILETIME ft = base::bit_cast<FILETIME, uint64_t>(ticks);
return base::Time::FromFileTime(ft);
}
// A wrapper function converting ticks (in units of 100 ns) to TimeDelta.
base::TimeDelta ConvertTicksToTimeDelta(uint64_t ticks) {
return base::Microseconds(ticks / 10);
}
} // namespace
// ProcessDataSnapshot gets created and accessed only on the worker thread.
// This is used to calculate metrics like Idle Wakeups / sec that require
// a delta between two snapshots.
// Please note that ProcessDataSnapshot has to be outside of anonymous namespace
// in order to match the declaration in shared_sampler.h.
struct ProcessDataSnapshot {
ProcessDataMap processes;
base::TimeTicks timestamp;
};
SharedSampler::SharedSampler(
const scoped_refptr<base::SequencedTaskRunner>& blocking_pool_runner)
: refresh_flags_(0), previous_buffer_size_(0),
supported_image_names_(GetSupportedImageNames()),
blocking_pool_runner_(blocking_pool_runner) {
DCHECK(blocking_pool_runner.get());
// This object will be created on the UI thread, however the sequenced checker
// will be used to assert we're running the expensive operations on one of the
// blocking pool threads.
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
DETACH_FROM_SEQUENCE(worker_pool_sequenced_checker_);
}
SharedSampler::~SharedSampler() = default;
int64_t SharedSampler::GetSupportedFlags() const {
return REFRESH_TYPE_IDLE_WAKEUPS | REFRESH_TYPE_START_TIME |
REFRESH_TYPE_CPU_TIME | REFRESH_TYPE_HARD_FAULTS;
}
void SharedSampler::RegisterCallback(
base::ProcessId process_id,
OnSamplingCompleteCallback on_sampling_complete) {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
if (process_id == 0)
return;
bool result =
callbacks_map_.emplace(process_id, std::move(on_sampling_complete))
.second;
DCHECK(result);
}
void SharedSampler::UnregisterCallback(base::ProcessId process_id) {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
if (process_id == 0)
return;
callbacks_map_.erase(process_id);
if (callbacks_map_.empty())
ClearState();
}
void SharedSampler::Refresh(base::ProcessId process_id, int64_t refresh_flags) {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
DCHECK_NE(0, refresh_flags & GetSupportedFlags());
if (process_id == 0)
return;
DCHECK(callbacks_map_.find(process_id) != callbacks_map_.end());
if (refresh_flags_ == 0) {
blocking_pool_runner_->PostTaskAndReplyWithResult(
FROM_HERE, base::BindOnce(&SharedSampler::RefreshOnWorkerThread, this),
base::BindOnce(&SharedSampler::OnRefreshDone, this));
} else {
// http://crbug.com/678471
// A group of consecutive Refresh calls should all specify the same refresh
// flags. Rarely RefreshOnWorkerThread could take a long time (> 1 sec),
// long enough for a next refresh cycle to start before results are ready
// from a previous cycle. In that case refresh_flags_ would still remain
// set to the previous cycle refresh flags which might be different than
// this cycle refresh flags if a column was added or removed between the two
// cycles. The worst that could happen in that condition is that results for
// a newly added column would be missing for one extra refresh cycle.
}
refresh_flags_ |= refresh_flags;
}
void SharedSampler::ClearState() {
previous_snapshot_.reset();
}
SharedSampler::AllSamplingResults SharedSampler::RefreshOnWorkerThread() {
DCHECK_CALLED_ON_VALID_SEQUENCE(worker_pool_sequenced_checker_);
AllSamplingResults results;
std::unique_ptr<ProcessDataSnapshot> snapshot = CaptureSnapshot();
if (snapshot) {
if (previous_snapshot_) {
results = MakeResultsFromTwoSnapshots(*previous_snapshot_, *snapshot);
} else {
results = MakeResultsFromSnapshot(*snapshot);
}
previous_snapshot_ = std::move(snapshot);
} else {
// Failed to get snapshot. This is unlikely.
ClearState();
}
return results;
}
/* static */
std::vector<base::FilePath> SharedSampler::GetSupportedImageNames() {
const wchar_t kNacl64Exe[] = L"nacl64.exe";
std::vector<base::FilePath> supported_names;
base::FilePath current_exe;
if (base::PathService::Get(base::FILE_EXE, ¤t_exe))
supported_names.push_back(current_exe.BaseName());
supported_names.push_back(
base::FilePath(chrome::kBrowserProcessExecutableName));
supported_names.push_back(base::FilePath(kNacl64Exe));
return supported_names;
}
bool SharedSampler::IsSupportedImageName(
base::FilePath::StringViewType image_name) const {
for (const base::FilePath& supported_name : supported_image_names_) {
if (base::FilePath::CompareEqualIgnoreCase(image_name,
supported_name.value()))
return true;
}
return false;
}
std::unique_ptr<ProcessDataSnapshot> SharedSampler::CaptureSnapshot() {
DCHECK_CALLED_ON_VALID_SEQUENCE(worker_pool_sequenced_checker_);
// Preallocate the buffer with the size determined on the previous call to
// QuerySystemProcessInformation. This should be sufficient most of the time.
// QuerySystemProcessInformation will grow the buffer if necessary.
ByteBuffer data_buffer(previous_buffer_size_);
if (!QuerySystemProcessInformation(&data_buffer)) {
return nullptr;
}
previous_buffer_size_ = data_buffer.span().size();
std::unique_ptr<ProcessDataSnapshot> snapshot(new ProcessDataSnapshot);
snapshot->timestamp = base::TimeTicks::Now();
base::span<const BYTE> data_span = data_buffer.data_span();
for (size_t offset = 0; offset < data_span.size();) {
// Validate the offset is valid.
if (offset + sizeof(SYSTEM_PROCESS_INFORMATION) > data_span.size()) {
break;
}
// Validate all needed data is within the buffer boundary.
const auto* pi = reinterpret_cast<const SYSTEM_PROCESS_INFORMATION*>(
data_span.subspan(offset).data());
if (pi->NumberOfThreads > 0 &&
(offset + sizeof(SYSTEM_PROCESS_INFORMATION) +
(pi->NumberOfThreads - 1) * sizeof(SYSTEM_THREAD_INFORMATION) >
data_span.size())) {
break;
}
if (pi->ImageName.Buffer) {
// Validate that the image name is within the buffer boundary.
// ImageName.Length seems to be in bytes rather than characters.
ULONG image_name_offset =
reinterpret_cast<BYTE*>(pi->ImageName.Buffer) - data_span.data();
if (image_name_offset + pi->ImageName.Length > data_span.size()) {
break;
}
// Check if this is a chrome process. Ignore all other processes.
if (IsSupportedImageName(pi->ImageName.Buffer)) {
// Collect enough data to be able to do a diff between two snapshots.
// Some threads might stop or new threads might be created between two
// snapshots. If a thread with a large number of context switches gets
// terminated the total number of context switches for the process might
// go down and the delta would be negative.
// To avoid that we need to compare thread IDs between two snapshots and
// not count context switches for threads that are missing in the most
// recent snapshot.
ProcessData process_data;
process_data.hard_fault_count = pi->HardFaultCount;
process_data.start_time = ConvertTicksToTime(pi->CreateTime);
process_data.cpu_time =
ConvertTicksToTimeDelta(pi->KernelTime + pi->UserTime);
// Iterate over threads and store each thread's ID and number of context
// switches.
// SAFETY: Already validated `data_span` has room for this many threads
// above.
auto threads_span =
UNSAFE_BUFFERS(base::span(pi->Threads, pi->NumberOfThreads));
for (const SYSTEM_THREAD_INFORMATION& thread : threads_span) {
if (thread.ClientId.UniqueProcess != pi->ProcessId) {
continue;
}
ThreadData thread_data;
thread_data.thread_id = thread.ClientId.UniqueThread;
thread_data.context_switches = thread.ContextSwitchCount;
process_data.threads.push_back(thread_data);
}
// Order thread data by thread ID to help diff two snapshots.
std::sort(process_data.threads.begin(), process_data.threads.end(),
[](const ThreadData& l, const ThreadData r) {
return l.thread_id < r.thread_id;
});
base::ProcessId process_id = static_cast<base::ProcessId>(
reinterpret_cast<uintptr_t>(pi->ProcessId));
bool inserted = snapshot->processes.insert(
std::make_pair(process_id, std::move(process_data))).second;
DCHECK(inserted);
}
}
// Check for end of the list.
if (!pi->NextEntryOffset) {
break;
}
// Jump to the next entry.
offset += pi->NextEntryOffset;
}
return snapshot;
}
SharedSampler::AllSamplingResults SharedSampler::MakeResultsFromTwoSnapshots(
const ProcessDataSnapshot& prev_snapshot,
const ProcessDataSnapshot& snapshot) {
// Time delta in seconds.
double time_delta = (snapshot.timestamp - prev_snapshot.timestamp)
.InSecondsF();
// Iterate over processes in both snapshots in parallel. This algorithm relies
// on map entries being ordered by Process ID.
ProcessDataMap::const_iterator prev_iter = prev_snapshot.processes.begin();
AllSamplingResults results;
results.reserve(snapshot.processes.size());
for (const auto& current_entry : snapshot.processes) {
base::ProcessId process_id = current_entry.first;
const ProcessData& process = current_entry.second;
const ProcessData* prev_snapshot_process = SeekInPreviousSnapshot(
process_id, &prev_iter, prev_snapshot.processes.end());
// Delta between the old snapshot and the new snapshot.
int64_t hard_faults_delta = 0;
int idle_wakeups_delta;
if (prev_snapshot_process) {
hard_faults_delta =
process.hard_fault_count - prev_snapshot_process->hard_fault_count;
// Processes match between two snapshots. Diff context switches.
idle_wakeups_delta =
CountContextSwitchesDelta(*prev_snapshot_process, process);
} else {
// Process is missing in the previous snapshot.
// Use entire number of context switches of the current process.
idle_wakeups_delta = CountContextSwitchesDelta(ProcessData(), process);
}
ProcessIdAndSamplingResult result;
result.process_id = process_id;
result.data.hard_faults_per_second =
static_cast<int>(round(hard_faults_delta / time_delta));
result.data.idle_wakeups_per_second =
static_cast<int>(round(idle_wakeups_delta / time_delta));
result.data.start_time = process.start_time;
result.data.cpu_time = process.cpu_time;
results.push_back(result);
}
return results;
}
SharedSampler::AllSamplingResults SharedSampler::MakeResultsFromSnapshot(
const ProcessDataSnapshot& snapshot) {
AllSamplingResults results;
results.reserve(snapshot.processes.size());
for (const auto& pair : snapshot.processes) {
ProcessIdAndSamplingResult result;
result.process_id = pair.first;
// Use 0 for Idle Wakeups / sec in this case. This is consistent with
// ProcessMetrics::CalculateIdleWakeupsPerSecond implementation.
result.data.hard_faults_per_second = 0;
result.data.idle_wakeups_per_second = 0;
result.data.start_time = pair.second.start_time;
result.data.cpu_time = pair.second.cpu_time;
results.push_back(result);
}
return results;
}
void SharedSampler::OnRefreshDone(AllSamplingResults refresh_results) {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
DCHECK_NE(0, refresh_flags_);
size_t result_index = 0;
for (const auto& callback_entry : callbacks_map_) {
base::ProcessId process_id = callback_entry.first;
SamplingResult process_result;
// Match refresh result by |process_id|.
// This relies on refresh results being ordered by Process ID.
// Please note that |refresh_results| might contain some extra entries that
// don't exist in |callbacks_map_| if there is more than one instance of
// Chrome. It might be missing some entries too if there is a race condition
// between getting process information on the worker thread and adding a
// corresponding TaskGroup to the task manager.
for (; result_index < refresh_results.size(); ++result_index) {
const auto& result = refresh_results[result_index];
if (result.process_id == process_id) {
// Data matched in |refresh_results|.
process_result = std::move(result.data);
++result_index;
break;
}
if (result.process_id > process_id) {
// An entry corresponding to |process_id| is missing. See above.
break;
}
}
callback_entry.second.Run(std::move(process_result));
}
// Reset refresh_results_ to trigger RefreshOnWorkerThread next time Refresh
// is called.
refresh_flags_ = 0;
}
} // namespace task_manager
|