1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/renderer/accessibility/phrase_segmentation/dependency_parser_model.h"
#include "base/logging.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/metrics/histogram_macros_local.h"
#include "base/timer/elapsed_timer.h"
#include "build/build_config.h"
#include "chrome/renderer/accessibility/phrase_segmentation/dependency_parser_op_resolver.h"
#include "components/optimization_guide/core/optimization_guide_features.h"
#include "third_party/tensorflow-text/src/tensorflow_text/core/kernels/mst_solver.h"
#include "third_party/tensorflow_models/src/research/seq_flow_lite/tflite_ops/quantization_util.h"
#include "third_party/tflite/src/tensorflow/lite/string_util.h"
#include "third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/tflite_engine.h"
namespace {
// Util class for recording the result of loading the dependency parser model.
// The result is recorded when it goes out of scope and its destructor is
// called.
class ScopedDependencyParserModelStateRecorder {
public:
explicit ScopedDependencyParserModelStateRecorder(
DependencyParserModelState state)
: state_(state) {}
ScopedDependencyParserModelStateRecorder(
const ScopedDependencyParserModelStateRecorder&) = delete;
ScopedDependencyParserModelStateRecorder& operator=(
const ScopedDependencyParserModelStateRecorder&) = delete;
~ScopedDependencyParserModelStateRecorder() {
UMA_HISTOGRAM_ENUMERATION(
"Accessibility.DependencyParserModel.DependencyParserModelState",
state_);
}
void set_state(DependencyParserModelState state) { state_ = state; }
private:
DependencyParserModelState state_;
};
} // namespace
DependencyParserModel::DependencyParserModel()
: num_threads_(optimization_guide::features::OverrideNumThreadsForOptTarget(
optimization_guide::proto::
OPTIMIZATION_TARGET_PHRASE_SEGMENTATION)
.value_or(-1)) {}
DependencyParserModel::~DependencyParserModel() = default;
void DependencyParserModel::UpdateWithFile(base::File model_file) {
ScopedDependencyParserModelStateRecorder recorder(
DependencyParserModelState::kModelFileInvalid);
model_file_ = std::move(model_file);
if (!model_file_.IsValid()) {
return;
}
base::ElapsedTimer timer;
auto tflite_engine = std::make_unique<tflite::task::core::TfLiteEngine>(
std::make_unique<DependencyParserOpResolver>());
#if BUILDFLAG(IS_WIN)
absl::Status model_load_status =
tflite_engine->BuildModelFromFileHandle(model_file_.GetPlatformFile());
#else
absl::Status model_load_status = tflite_engine->BuildModelFromFileDescriptor(
model_file_.GetPlatformFile());
#endif
if (!model_load_status.ok()) {
LOCAL_HISTOGRAM_BOOLEAN(
"Accessibility.DependencyParserModel.InvalidModelFile", true);
DLOG(ERROR) << "Failed to load model: " << model_load_status.ToString();
return;
}
recorder.set_state(DependencyParserModelState::kModelFileValid);
auto compute_settings = tflite::proto::ComputeSettings();
compute_settings.mutable_tflite_settings()
->mutable_cpu_settings()
->set_num_threads(num_threads_);
absl::Status interpreter_status =
tflite_engine->InitInterpreter(compute_settings);
if (!interpreter_status.ok()) {
DLOG(ERROR) << "Failed to initialize model interpreter: "
<< interpreter_status.ToString();
return;
}
base::UmaHistogramTimes("Accessibility.DependencyParserModel.Create.Duration",
timer.Elapsed());
recorder.set_state(DependencyParserModelState::kModelAvailable);
dependency_parser_model_ = std::move(tflite_engine);
}
bool DependencyParserModel::IsAvailable() const {
return dependency_parser_model_ != nullptr;
}
int64_t DependencyParserModel::GetModelVersion() const {
// TODO(b/339037155): Return the model version provided
// by the model itself.
return 1;
}
std::vector<size_t> DependencyParserModel::GetDependencyHeads(
base::span<const std::string> input) {
DCHECK(IsAvailable());
base::ElapsedTimer timer;
// Perform the following operations to identify the dependency heads for each
// token:
// 1. Processes the input (tokenized string, length N) using the TFLite
// model to generate a dependency probability matrix (NxN).
// 2. Utilizes a Minimum Spanning Tree (MST) algorithm to identify the
// dependency head for each token.
auto* interpreter = dependency_parser_model_->interpreter();
interpreter->ResizeInputTensor(0, {1, static_cast<int>(input.size())});
TfLiteTensor* input_tensor = interpreter->input_tensor(0);
tflite::DynamicBuffer input_buffer;
for (const auto& token : input) {
tflite::StringRef string_ref;
string_ref.str = token.data();
string_ref.len = token.size();
input_buffer.AddString(string_ref);
}
// Populate tensors.
input_buffer.WriteToTensor(input_tensor, /*new_shape=*/nullptr);
interpreter->AllocateTensors();
interpreter->Invoke();
base::UmaHistogramTimes(
"Accessibility.DependencyParserModel.Inference.Duration",
timer.Elapsed());
base::UmaHistogramCounts1M(
"Accessibility.DependencyParserModel.Inference.LengthInTokens",
input.size());
const TfLiteTensor* output_tensor = interpreter->output_tensor(0);
if (output_tensor == nullptr) {
DLOG(ERROR) << "Error: output tensor is null.";
return {};
}
size_t size = output_tensor->dims->data[0];
base::UmaHistogramBoolean(
"Accessibility.DependencyParserModel.Inference.Succeed",
size == input.size());
if (size != input.size()) {
DLOG(ERROR) << "Error: output tensor size does not match input size.";
return {};
}
std::vector<std::vector<float>> dependency_graph;
dependency_graph.reserve(size);
for (size_t j = 0; j < size; j++) {
std::vector<float> dependency_graph_inner;
dependency_graph_inner.reserve(size);
for (size_t i = 0; i < size; i++) {
dependency_graph_inner.push_back(
seq_flow_lite::PodDequantize<uint8_t>(*output_tensor, j * size + i));
}
dependency_graph.emplace_back(dependency_graph_inner);
}
return SolveDependencies(dependency_graph);
}
std::vector<size_t> DependencyParserModel::SolveDependencies(
base::span<const std::vector<float>> input) {
tensorflow::text::MstSolver<size_t, float> solver;
size_t size = input.size();
if (!solver.Init(/*forest=*/false, size).ok()) {
return {};
}
for (size_t i = 0; i < size; i++) {
for (size_t j = 0; j < size; j++) {
if (i == j) {
solver.AddRoot(i, input[i][j]);
} else {
solver.AddArc(j, i, input[i][j]);
}
}
}
std::vector<size_t> heads;
heads.resize(size);
if (!solver.Solve(&heads).ok()) {
return {};
}
return heads;
}
|