1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chromeos/ash/components/local_search_service/inverted_index.h"
#include <cmath>
#include <string>
#include <unordered_map>
#include <vector>
#include "base/functional/bind.h"
#include "base/strings/utf_string_conversions.h"
#include "base/test/task_environment.h"
#include "chromeos/ash/components/local_search_service/shared_structs.h"
#include "chromeos/ash/components/local_search_service/test_utils.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace ash::local_search_service {
namespace {
std::vector<float> GetScoresFromTfidfResult(
const std::vector<TfidfResult>& results) {
std::vector<float> scores;
for (const auto& item : results) {
scores.push_back(std::roundf(std::get<2>(item) * 100) / 100.0);
}
return scores;
}
constexpr double kDefaultWeight = 1.0;
} // namespace
class InvertedIndexTest : public ::testing::Test {
public:
void SetUp() override {
// All content weights are initialized to |kDefaultWeight|.
index_.doc_length_ =
std::unordered_map<std::string, uint32_t>({{"doc1", 8}, {"doc2", 6}});
index_.dictionary_[u"A"] = PostingList(
{{"doc1",
Posting({WeightedPosition(kDefaultWeight, Position("header", 1, 1)),
WeightedPosition(kDefaultWeight, Position("header", 3, 1)),
WeightedPosition(kDefaultWeight, Position("body", 5, 1)),
WeightedPosition(kDefaultWeight, Position("body", 7, 1))})},
{"doc2",
Posting(
{WeightedPosition(kDefaultWeight, Position("header", 2, 1)),
WeightedPosition(kDefaultWeight, Position("header", 4, 1))})}});
index_.dictionary_[u"B"] = PostingList(
{{"doc1",
Posting(
{WeightedPosition(kDefaultWeight, Position("header", 2, 1)),
WeightedPosition(kDefaultWeight, Position("body", 4, 1)),
WeightedPosition(kDefaultWeight, Position("header", 6, 1)),
WeightedPosition(kDefaultWeight, Position("body", 8, 1))})}});
index_.dictionary_[u"C"] = PostingList(
{{"doc2",
Posting(
{WeightedPosition(kDefaultWeight, Position("header", 1, 1)),
WeightedPosition(kDefaultWeight, Position("body", 3, 1)),
WeightedPosition(kDefaultWeight, Position("header", 5, 1)),
WeightedPosition(kDefaultWeight, Position("body", 7, 1))})}});
index_.terms_to_be_updated_.insert(u"A");
index_.terms_to_be_updated_.insert(u"B");
index_.terms_to_be_updated_.insert(u"C");
// Manually set |is_index_built_| below because the docs above were not
// added to the index using the AddOrUpdate method.
index_.is_index_built_ = false;
}
PostingList FindTerm(const std::u16string& term) {
return index_.FindTerm(term);
}
std::vector<Result> FindMatchingDocumentsApproximately(
const std::unordered_set<std::u16string>& terms,
double prefix_threshold,
double block_threshold) {
return index_.FindMatchingDocumentsApproximately(terms, prefix_threshold,
block_threshold);
}
void AddDocumentsAndCheck(const DocumentToUpdate& documents) {
bool callback_done = false;
index_.AddDocuments(
documents,
base::BindOnce([](bool* callback_done) { *callback_done = true; },
&callback_done));
Wait();
ASSERT_TRUE(callback_done);
}
void RemoveDocumentsAndCheck(const std::vector<std::string>& doc_ids,
uint32_t expect_num_deleted) {
bool callback_done = false;
uint32_t num_deleted = 0u;
index_.RemoveDocuments(doc_ids,
base::BindOnce(
[](bool* callback_done, uint32_t* num_deleted,
uint32_t num_deleted_callback) {
*callback_done = true;
*num_deleted = num_deleted_callback;
},
&callback_done, &num_deleted));
Wait();
ASSERT_TRUE(callback_done);
EXPECT_EQ(num_deleted, expect_num_deleted);
}
void UpdateDocumentsAndCheck(const DocumentToUpdate& documents,
uint32_t expect_num_deleted) {
bool callback_done = false;
uint32_t num_deleted = 0u;
index_.UpdateDocuments(documents,
base::BindOnce(
[](bool* callback_done, uint32_t* num_deleted,
uint32_t num_deleted_callback) {
*callback_done = true;
*num_deleted = num_deleted_callback;
},
&callback_done, &num_deleted));
Wait();
ASSERT_TRUE(callback_done);
EXPECT_EQ(num_deleted, expect_num_deleted);
}
void ClearInvertedIndexAndCheck() {
bool callback_done = false;
index_.ClearInvertedIndex(base::BindOnce(
[](bool* callback_done) { *callback_done = true; }, &callback_done));
Wait();
ASSERT_TRUE(callback_done);
}
std::vector<TfidfResult> GetTfidf(const std::u16string& term) {
return index_.GetTfidf(term);
}
bool GetTfidfForDocId(const std::u16string& term,
const std::string& docid,
float* tfidf,
size_t* number_positions) {
const auto& posting = GetTfidf(term);
if (posting.empty()) {
return false;
}
for (const auto& tfidf_result : posting) {
if (std::get<0>(tfidf_result) == docid) {
*number_positions = std::get<1>(tfidf_result).size();
*tfidf = std::get<2>(tfidf_result);
return true;
}
}
return false;
}
void BuildInvertedIndexAndCheck() {
bool callback_done = false;
index_.BuildInvertedIndex(base::BindOnce(
[](bool* callback_done) { *callback_done = true; }, &callback_done));
Wait();
ASSERT_TRUE(callback_done);
}
bool IsInvertedIndexBuilt() { return index_.IsInvertedIndexBuilt(); }
std::unordered_map<std::u16string, PostingList> GetDictionary() {
return index_.dictionary_;
}
std::unordered_map<std::string, uint32_t> GetDocLength() {
return index_.doc_length_;
}
std::unordered_map<std::u16string, std::vector<TfidfResult>> GetTfidfCache() {
return index_.tfidf_cache_;
}
DocumentToUpdate GetDocumentsToUpdate() {
return index_.documents_to_update_;
}
TermSet GetTermToBeUpdated() { return index_.terms_to_be_updated_; }
void Wait() { task_environment_.RunUntilIdle(); }
protected:
base::test::TaskEnvironment task_environment_{
base::test::TaskEnvironment::MainThreadType::DEFAULT,
base::test::TaskEnvironment::ThreadPoolExecutionMode::QUEUED};
private:
InvertedIndex index_;
};
TEST_F(InvertedIndexTest, FindTermTest) {
PostingList result = FindTerm(u"A");
ASSERT_EQ(result.size(), 2u);
EXPECT_EQ(result["doc1"][0].weight, kDefaultWeight);
EXPECT_EQ(result["doc1"][0].position.start, 1u);
EXPECT_EQ(result["doc1"][1].weight, kDefaultWeight);
EXPECT_EQ(result["doc1"][1].position.start, 3u);
EXPECT_EQ(result["doc1"][2].weight, kDefaultWeight);
EXPECT_EQ(result["doc1"][2].position.start, 5u);
EXPECT_EQ(result["doc1"][3].weight, kDefaultWeight);
EXPECT_EQ(result["doc1"][3].position.start, 7u);
EXPECT_EQ(result["doc2"][0].weight, kDefaultWeight);
EXPECT_EQ(result["doc2"][0].position.start, 2u);
EXPECT_EQ(result["doc2"][1].weight, kDefaultWeight);
EXPECT_EQ(result["doc2"][1].position.start, 4u);
}
TEST_F(InvertedIndexTest, AddNewDocumentTest) {
const std::u16string a_utf16(u"A");
const std::u16string d_utf16(u"D");
AddDocumentsAndCheck({{"doc3",
{{a_utf16,
{{kDefaultWeight, {"header", 1, 1}},
{kDefaultWeight / 2, {"body", 2, 1}},
{kDefaultWeight, {"header", 4, 1}}}},
{d_utf16,
{{kDefaultWeight, {"header", 3, 1}},
{kDefaultWeight / 2, {"body", 5, 1}}}}}}});
EXPECT_EQ(GetDocLength()["doc3"], 5u);
// Find "A"
PostingList result = FindTerm(a_utf16);
ASSERT_EQ(result.size(), 3u);
EXPECT_EQ(result["doc3"][0].weight, kDefaultWeight);
EXPECT_EQ(result["doc3"][0].position.start, 1u);
EXPECT_EQ(result["doc3"][1].weight, kDefaultWeight / 2);
EXPECT_EQ(result["doc3"][1].position.start, 2u);
EXPECT_EQ(result["doc3"][2].weight, kDefaultWeight);
EXPECT_EQ(result["doc3"][2].position.start, 4u);
// Find "D"
result = FindTerm(d_utf16);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result["doc3"][0].weight, kDefaultWeight);
EXPECT_EQ(result["doc3"][0].position.start, 3u);
EXPECT_EQ(result["doc3"][1].weight, kDefaultWeight / 2);
EXPECT_EQ(result["doc3"][1].position.start, 5u);
// Add multiple documents
AddDocumentsAndCheck({{"doc4",
{{u"E",
{{kDefaultWeight, {"header", 1, 1}},
{kDefaultWeight / 2, {"body", 2, 1}},
{kDefaultWeight, {"header", 4, 1}}}},
{u"F",
{{kDefaultWeight, {"header", 3, 1}},
{kDefaultWeight / 2, {"body", 5, 1}}}}}},
{"doc5",
{{u"E",
{{kDefaultWeight, {"header", 1, 1}},
{kDefaultWeight / 2, {"body", 2, 1}},
{kDefaultWeight, {"header", 4, 1}}}},
{u"G",
{{kDefaultWeight, {"header", 3, 1}},
{kDefaultWeight / 2, {"body", 5, 1}}}}}}});
// Find "E"
result = FindTerm(u"E");
ASSERT_EQ(result.size(), 2u);
// Find "F"
result = FindTerm(u"F");
ASSERT_EQ(result.size(), 1u);
}
TEST_F(InvertedIndexTest, ReplaceDocumentTest) {
const std::u16string a_utf16(u"A");
const std::u16string d_utf16(u"D");
AddDocumentsAndCheck({{"doc1",
{{a_utf16,
{{kDefaultWeight, {"header", 1, 1}},
{kDefaultWeight / 4, {"body", 2, 1}},
{kDefaultWeight / 2, {"header", 4, 1}}}},
{d_utf16,
{{kDefaultWeight / 3, {"header", 3, 1}},
{kDefaultWeight / 5, {"body", 5, 1}}}}}}});
EXPECT_EQ(GetDocLength()["doc1"], 5u);
EXPECT_EQ(GetDocLength()["doc2"], 6u);
// Find "A"
PostingList result = FindTerm(a_utf16);
ASSERT_EQ(result.size(), 2u);
EXPECT_EQ(result["doc1"][0].weight, kDefaultWeight);
EXPECT_EQ(result["doc1"][0].position.start, 1u);
EXPECT_EQ(result["doc1"][1].weight, kDefaultWeight / 4);
EXPECT_EQ(result["doc1"][1].position.start, 2u);
EXPECT_EQ(result["doc1"][2].weight, kDefaultWeight / 2);
EXPECT_EQ(result["doc1"][2].position.start, 4u);
// Find "B"
result = FindTerm(u"B");
ASSERT_EQ(result.size(), 0u);
// Find "D"
result = FindTerm(d_utf16);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result["doc1"][0].weight, kDefaultWeight / 3);
EXPECT_EQ(result["doc1"][0].position.start, 3u);
EXPECT_EQ(result["doc1"][1].weight, kDefaultWeight / 5);
EXPECT_EQ(result["doc1"][1].position.start, 5u);
}
TEST_F(InvertedIndexTest, RemoveDocumentTest) {
EXPECT_EQ(GetDictionary().size(), 3u);
EXPECT_EQ(GetDocLength().size(), 2u);
RemoveDocumentsAndCheck({"doc1"}, 1u);
EXPECT_EQ(GetDictionary().size(), 2u);
EXPECT_EQ(GetDocLength().size(), 1u);
EXPECT_EQ(GetDocLength()["doc2"], 6u);
// Find "A"
PostingList result = FindTerm(u"A");
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result["doc2"][0].weight, kDefaultWeight);
EXPECT_EQ(result["doc2"][0].position.start, 2u);
EXPECT_EQ(result["doc2"][1].weight, kDefaultWeight);
EXPECT_EQ(result["doc2"][1].position.start, 4u);
// Find "B"
result = FindTerm(u"B");
ASSERT_EQ(result.size(), 0u);
// Find "C"
result = FindTerm(u"C");
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result["doc2"][0].weight, kDefaultWeight);
EXPECT_EQ(result["doc2"][0].position.start, 1u);
EXPECT_EQ(result["doc2"][1].weight, kDefaultWeight);
EXPECT_EQ(result["doc2"][1].position.start, 3u);
EXPECT_EQ(result["doc2"][2].weight, kDefaultWeight);
EXPECT_EQ(result["doc2"][2].position.start, 5u);
EXPECT_EQ(result["doc2"][3].weight, kDefaultWeight);
EXPECT_EQ(result["doc2"][3].position.start, 7u);
// Removes multiple documents, but only "doc2" is actually removed since
// "doc1" and "doc3" don't exist.
RemoveDocumentsAndCheck({"doc1", "doc2", "doc3"}, 1u);
EXPECT_EQ(GetDictionary().size(), 0u);
EXPECT_EQ(GetDocLength().size(), 0u);
}
TEST_F(InvertedIndexTest, UpdateIndexTest) {
EXPECT_EQ(GetTfidfCache().size(), 0u);
BuildInvertedIndexAndCheck();
EXPECT_EQ(GetTfidfCache().size(), 3u);
// Replaces "doc1"
AddDocumentsAndCheck({{"doc1",
{{u"A",
{{kDefaultWeight / 2, {"header", 1, 1}},
{kDefaultWeight / 4, {"body", 2, 1}},
{kDefaultWeight / 2, {"header", 4, 1}}}},
{u"D",
{{kDefaultWeight, {"header", 3, 1}},
{kDefaultWeight, {"body", 5, 1}}}}}}});
EXPECT_FALSE(IsInvertedIndexBuilt());
BuildInvertedIndexAndCheck();
EXPECT_EQ(GetTfidfCache().size(), 3u);
std::vector<TfidfResult> results = GetTfidf(u"A");
const double expected_tfidf_A_doc1 =
std::roundf(
TfIdfScore(
/*num_docs=*/2,
/*num_docs_with_term=*/2,
/*weighted_num_term_occurrence_in_doc=*/kDefaultWeight / 2 +
kDefaultWeight / 4 + kDefaultWeight / 2,
/*doc_length=*/5) *
100) /
100;
const double expected_tfidf_A_doc2 =
std::roundf(
TfIdfScore(/*num_docs=*/2,
/*num_docs_with_term=*/2,
/*weighted_num_term_occurrence_in_doc=*/kDefaultWeight * 2,
/*doc_length=*/6) *
100) /
100;
EXPECT_THAT(GetScoresFromTfidfResult(results),
testing::UnorderedElementsAre(expected_tfidf_A_doc1,
expected_tfidf_A_doc2));
results = GetTfidf(u"B");
EXPECT_THAT(GetScoresFromTfidfResult(results),
testing::UnorderedElementsAre());
results = GetTfidf(u"C");
const double expected_tfidf_C_doc2 =
std::roundf(
TfIdfScore(/*num_docs=*/2,
/*num_docs_with_term=*/1,
/*weighted_num_term_occurrence_in_doc=*/kDefaultWeight * 4,
/*doc_length=*/6) *
100) /
100;
EXPECT_THAT(GetScoresFromTfidfResult(results),
testing::UnorderedElementsAre(expected_tfidf_C_doc2));
results = GetTfidf(u"D");
const double expected_tfidf_D_doc1 =
std::roundf(
TfIdfScore(/*num_docs=*/2,
/*num_docs_with_term=*/1,
/*weighted_num_term_occurrence_in_doc=*/kDefaultWeight * 2,
/*doc_length=*/5) *
100) /
100;
EXPECT_THAT(GetScoresFromTfidfResult(results),
testing::UnorderedElementsAre(expected_tfidf_D_doc1));
}
TEST_F(InvertedIndexTest, UpdateDocumentsTest) {
EXPECT_EQ(GetTfidfCache().size(), 0u);
BuildInvertedIndexAndCheck();
EXPECT_EQ(GetTfidfCache().size(), 3u);
// Replaces "doc1" and remove "doc2"
UpdateDocumentsAndCheck({{"doc1",
{{u"A",
{{kDefaultWeight / 2, {"header", 1, 1}},
{kDefaultWeight / 4, {"body", 2, 1}},
{kDefaultWeight / 2, {"header", 4, 1}}}},
{u"D",
{{kDefaultWeight, {"header", 3, 1}},
{kDefaultWeight, {"body", 5, 1}}}}}},
{"doc2", {}}},
1u);
BuildInvertedIndexAndCheck();
EXPECT_EQ(GetTfidfCache().size(), 2u);
std::vector<TfidfResult> results = GetTfidf(u"C");
EXPECT_EQ(results.size(), 0u);
}
TEST_F(InvertedIndexTest, ClearInvertedIndexTest) {
EXPECT_EQ(GetTfidfCache().size(), 0u);
BuildInvertedIndexAndCheck();
EXPECT_EQ(GetTfidfCache().size(), 3u);
// Add a document and clear the index simultaneously.
const std::u16string a_utf16(u"A");
const std::u16string d_utf16(u"D");
AddDocumentsAndCheck({{"doc3",
{{a_utf16,
{{kDefaultWeight, {"header", 1, 1}},
{kDefaultWeight / 2, {"body", 2, 1}},
{kDefaultWeight, {"header", 4, 1}}}},
{d_utf16,
{{kDefaultWeight, {"header", 3, 1}},
{kDefaultWeight / 2, {"body", 5, 1}}}}}}});
ClearInvertedIndexAndCheck();
EXPECT_EQ(GetTfidfCache().size(), 0u);
EXPECT_EQ(GetTermToBeUpdated().size(), 0u);
EXPECT_EQ(GetDocLength().size(), 0u);
EXPECT_EQ(GetDictionary().size(), 0u);
EXPECT_EQ(GetDocumentsToUpdate().size(), 0u);
}
TEST_F(InvertedIndexTest, FindMatchingDocumentsApproximatelyTest) {
const double prefix_threshold = 1.0;
const double block_threshold = 1.0;
const std::u16string a_utf16(u"A");
const std::u16string b_utf16(u"B");
const std::u16string c_utf16(u"C");
const std::u16string d_utf16(u"D");
// Replace doc1, same occurrences, just different weights.
AddDocumentsAndCheck({{"doc1",
{{a_utf16,
{{kDefaultWeight, {"header", 1, 1}},
{kDefaultWeight, {"header", 3, 1}},
{kDefaultWeight / 2, {"body", 5, 1}},
{kDefaultWeight / 2, {"body", 7, 1}}}},
{b_utf16,
{{kDefaultWeight / 2, {"header", 2, 1}},
{kDefaultWeight / 2, {"header", 6, 1}},
{kDefaultWeight / 3, {"body", 4, 1}},
{kDefaultWeight / 3, {"body", 5, 1}}}}}}});
{
// "A" exists in "doc1" and "doc2". The score of each document is simply A's
// TF-IDF score.
const std::vector<Result> matching_docs =
FindMatchingDocumentsApproximately({a_utf16}, prefix_threshold,
block_threshold);
EXPECT_EQ(matching_docs.size(), 2u);
std::vector<std::string> expected_docids = {"doc1", "doc2"};
// TODO(jiameng): for testing, we should use another independent method to
// verify scores.
std::vector<float> actual_scores;
for (size_t i = 0; i < 2; ++i) {
const auto& docid = expected_docids[i];
float expected_score = 0;
size_t expected_num_pos = 0u;
EXPECT_TRUE(
GetTfidfForDocId(a_utf16, docid, &expected_score, &expected_num_pos));
CheckResult(matching_docs[i], docid, expected_score, expected_num_pos);
actual_scores.push_back(expected_score);
}
// Check scores are non-increasing.
EXPECT_GE(actual_scores[0], actual_scores[1]);
}
{
// "D" does not exist in the index.
const std::vector<Result> matching_docs =
FindMatchingDocumentsApproximately({d_utf16}, prefix_threshold,
block_threshold);
EXPECT_TRUE(matching_docs.empty());
}
{
// Query is {"A", "B", "C"}, which matches all documents.
const std::vector<Result> matching_docs =
FindMatchingDocumentsApproximately({a_utf16, b_utf16, c_utf16},
prefix_threshold, block_threshold);
EXPECT_EQ(matching_docs.size(), 2u);
// Ranked documents are {"doc2", "doc1"}.
// "doc2" score comes from sum of TF-IDF of "A" and "C"
float expected_score2_A = 0;
size_t expected_num_pos2_A = 0u;
EXPECT_TRUE(GetTfidfForDocId(a_utf16, "doc2", &expected_score2_A,
&expected_num_pos2_A));
float expected_score2_C = 0;
size_t expected_num_pos2_C = 0u;
EXPECT_TRUE(GetTfidfForDocId(c_utf16, "doc2", &expected_score2_C,
&expected_num_pos2_C));
const float expected_score2 = expected_score2_A + expected_score2_C;
const size_t expected_num_pos2 = expected_num_pos2_A + expected_num_pos2_C;
CheckResult(matching_docs[0], "doc2", expected_score2, expected_num_pos2);
// "doc1" score comes from sum of TF-IDF of "A" and "B".
float expected_score1_A = 0;
size_t expected_num_pos1_A = 0u;
EXPECT_TRUE(GetTfidfForDocId(a_utf16, "doc1", &expected_score1_A,
&expected_num_pos1_A));
float expected_score1_B = 0;
size_t expected_num_pos1_B = 0u;
EXPECT_TRUE(GetTfidfForDocId(b_utf16, "doc1", &expected_score1_B,
&expected_num_pos1_B));
const float expected_score1 = expected_score1_A + expected_score1_B;
const size_t expected_num_pos1 = expected_num_pos1_B + expected_num_pos1_B;
CheckResult(matching_docs[1], "doc1", expected_score1, expected_num_pos1);
EXPECT_GE(expected_score2, expected_score1);
}
}
} // namespace ash::local_search_service
|