File: userfaultfd_unittest.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (1121 lines) | stat: -rw-r--r-- 41,124 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "chromeos/ash/components/memory/userspace_swap/userfaultfd.h"

#include <fcntl.h>
#include <linux/unistd.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <unistd.h>

#include <atomic>

#include "base/files/scoped_file.h"
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/memory/page_size.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/rand_util.h"
#include "base/task/thread_pool.h"
#include "base/test/bind.h"
#include "base/test/task_environment.h"
#include "base/test/test_simple_task_runner.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace ash {
namespace memory {
namespace userspace_swap {

namespace {

using testing::_;
using testing::ByRef;
using testing::Eq;
using testing::Exactly;
using testing::Invoke;
using testing::Return;
using testing::StrictMock;

// ScopedMemory is a simple RAII memory class around mmap that simplifies
// tests.
class ScopedMemory {
 public:
  ScopedMemory(const ScopedMemory&) = delete;
  ScopedMemory& operator=(const ScopedMemory&) = delete;

  ~ScopedMemory() { Free(); }

  ScopedMemory() = default;
  explicit ScopedMemory(size_t size) { Alloc(size, PROT_READ | PROT_WRITE); }
  ScopedMemory(size_t size, int protections) { Alloc(size, protections); }

  void* Alloc(size_t size, int protections) {
    Free();
    ptr_ = mmap(nullptr, size, protections, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
    len_ = size;
    return ptr_;
  }

  void Free() {
    if (is_valid()) {
      munmap(ptr_, len_);
      ptr_ = nullptr;
      len_ = 0;
    }
  }

  void* Remap(size_t new_size) {
    ptr_ = mremap(ptr_, len_, new_size, MREMAP_MAYMOVE, nullptr);
    len_ = new_size;
    return ptr_;
  }

  void* Release() {
    void* ptr = ptr_;
    ptr_ = nullptr;
    return ptr;
  }

  operator bool() { return is_valid(); }

  operator uintptr_t() { return reinterpret_cast<uintptr_t>(ptr_); }

  template <typename T>
  operator T*() {
    return static_cast<T*>(ptr_);
  }

  bool is_valid() const { return ptr_ != nullptr && ptr_ != MAP_FAILED; }
  void* get() { return ptr_; }

 private:
  // RAW_PTR_EXCLUSION: Never allocated by PartitionAlloc (always mmap'ed), so
  // there is no benefit to using a raw_ptr, only cost.
  RAW_PTR_EXCLUSION void* ptr_ = nullptr;
  size_t len_ = 0;
};

const size_t kPageSize = base::GetPageSize();

}  // namespace

class UserfaultFDTest : public testing::Test {
 public:
  void SetUp() override {
    // We skip these tests if the kernel does not support userfaultfd
    // or when we have insufficient permissions.
    if (!UserfaultFD::KernelSupportsUserfaultFD()) {
      GTEST_SKIP() << "Skipping test: no userfaultfd(2) support.";
    }
    if (!CreateUffd() && errno == EPERM) {
      GTEST_SKIP() << "Skipping test: userfaultfd(2) not permitted.";
    }
  }

  void TearDown() override {
    if (uffd_) {
      uffd_->CloseAndStopWaitingForEvents();
    }
  }

 protected:
  bool CreateUffd(
      UserfaultFD::Features features = static_cast<UserfaultFD::Features>(0)) {
    uffd_ = UserfaultFD::Create(features);

    PLOG_IF(ERROR, !uffd_) << "UserfaultFD::Create failed";
    return uffd_ != nullptr;
  }

  int fd() {
    if (!uffd_)
      return -1;

    return uffd_->fd_.get();
  }

  // We need to allow our main test thread to run in parallel to our test code
  // as the test code will block until the main test thread can handle the
  // events.
  template <typename T>
  void ExecuteOffMainThread(T&& func) {
    base::ThreadPool::PostTask(FROM_HERE, base::BindLambdaForTesting(func));
  }

  std::unique_ptr<UserfaultFD> uffd_;

  // To enable FileDescriptorWatcher in unit tests you must use an IO thread.
  base::test::TaskEnvironment task_environment_{
      base::test::TaskEnvironment::MainThreadType::IO};
};

// We use a mock UserfaultFDHandler handler for testing.
class MockUserfaultFDHandler : public UserfaultFDHandler {
 public:
  MockUserfaultFDHandler() = default;

  MockUserfaultFDHandler(const MockUserfaultFDHandler&) = delete;
  MockUserfaultFDHandler& operator=(const MockUserfaultFDHandler&) = delete;

  ~MockUserfaultFDHandler() override = default;

  MOCK_METHOD3(Pagefault,
               bool(uintptr_t fault_address,
                    PagefaultFlags flags,
                    base::PlatformThreadId tid));
  MOCK_METHOD2(Unmapped, void(uintptr_t range_start, uintptr_t range_end));
  MOCK_METHOD2(Removed, void(uintptr_t range_start, uintptr_t range_end));
  MOCK_METHOD3(Remapped,
               void(uintptr_t old_address,
                    uintptr_t new_address,
                    uint64_t original_length));
  MOCK_METHOD1(Closed, void(int err));
};

uintptr_t GetPageBase(uintptr_t addr) {
  return addr & ~(base::GetPageSize() - 1);
}

void HandleWithZeroRange(UserfaultFD* uffd,
                         uint64_t fault_address,
                         uint64_t size) {
  int64_t zeroed = 0;
  ASSERT_TRUE(uffd->ZeroRange(GetPageBase(fault_address), size, &zeroed));
  ASSERT_EQ(zeroed, static_cast<int64_t>(size));
}

void HandleWithCopyRange(UserfaultFD* uffd,
                         uint64_t fault_address,
                         uint64_t from_address,
                         uint64_t size) {
  int64_t copied = 0;
  ASSERT_TRUE(uffd->CopyToRange(GetPageBase(fault_address), size, from_address,
                                &copied));
  ASSERT_EQ(copied, static_cast<int64_t>(size));
}

// This test will validate that StartWaitingForEvents fails if the uffd is not
// valid at that point.
TEST_F(UserfaultFDTest, TestBadFD) {
  ASSERT_TRUE(CreateUffd());

  // Release takes the FD out of it, meaning it will be left with -1 (a bad fd)
  base::ScopedFD raw_fd(uffd_->ReleaseFD());

  ASSERT_FALSE(uffd_->StartWaitingForEvents(std::move(nullptr)));
}

// This test will validate the userfaultfd behavior with a simple read fault
// which will be resolved by zero filling the page.
TEST_F(UserfaultFDTest, SimpleZeroPageReadFault) {
  ASSERT_TRUE(CreateUffd());

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  /* Create a simple mapping with no PTEs */
  ScopedMemory mem(kPageSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kPageSize));

  auto* uffd_ptr = uffd_.get();
  EXPECT_CALL(
      *handler,
      Pagefault(static_cast<uintptr_t>(mem),
                UserfaultFDHandler::PagefaultFlags::kReadFault,
                /* we didn't register for tids */ base::kInvalidThreadId))
      .WillOnce(Invoke([uffd_ptr](uintptr_t fault_address,
                                  UserfaultFDHandler::PagefaultFlags,
                                  base::PlatformThreadId) {
        HandleWithZeroRange(uffd_ptr, fault_address, kPageSize);
        return true;
      }));

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // Now generate a page fault by reading
    // from the page, this will invoke our
    // Pagefault handler above which will
    // zero fill the page for us.
    EXPECT_EQ(*static_cast<int*>(mem), 0);

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test validates that when a fault handler returns false the fault will be
// re-enqued and redelivered later.
TEST_F(UserfaultFDTest, SimpleZeroPageReadFaultRetry) {
  ASSERT_TRUE(CreateUffd());

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  /* Create a simple mapping with no PTEs */
  ScopedMemory mem(kPageSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kPageSize));

  // The first fault handle will return false, the second will return true.
  auto* uffd_ptr = uffd_.get();
  EXPECT_CALL(
      *handler,
      Pagefault(static_cast<uintptr_t>(mem),
                UserfaultFDHandler::PagefaultFlags::kReadFault,
                /* we didn't register for tids */ base::kInvalidThreadId))
      .WillOnce(
          Invoke([](uintptr_t fault_address, UserfaultFDHandler::PagefaultFlags,
                    base::PlatformThreadId) { return false; }))
      .WillOnce(Invoke([uffd_ptr](uintptr_t fault_address,
                                  UserfaultFDHandler::PagefaultFlags,
                                  base::PlatformThreadId) {
        HandleWithZeroRange(uffd_ptr, fault_address, kPageSize);
        return true;
      }));

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // Now generate a page fault by reading
    // from the page, this will invoke our
    // Pagefault handler above which will
    // zero fill the page for us.
    EXPECT_EQ(*static_cast<int*>(mem), 0);

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test will cause a simple read fault but will expect the TID to be set.
TEST_F(UserfaultFDTest, SimpleZeroPageReadFaultWithTid) {
  // Create the userfaultfd and tell it we want to see tids.
  ASSERT_TRUE(CreateUffd(UserfaultFD::kFeatureThreadID));

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  /* Create a simple mapping with no PTEs */
  ScopedMemory mem(kPageSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kPageSize));

  std::atomic<base::PlatformThreadId> expected_tid{base::kInvalidThreadId};

  auto* uffd_ptr = uffd_.get();

  // Because the code that causes the fault runs on a different thread we
  // capture the above atomic var by reference, this allows us to set it before
  // generating a fault so we can verify that we do receive the correct thread
  // id.
  EXPECT_CALL(*handler,
              Pagefault(static_cast<uintptr_t>(mem),
                        UserfaultFDHandler::PagefaultFlags::kReadFault,
                        Eq(ByRef(expected_tid))))
      .WillOnce(Invoke([uffd_ptr](uintptr_t fault_address,
                                  UserfaultFDHandler::PagefaultFlags,
                                  base::PlatformThreadId) {
        HandleWithZeroRange(uffd_ptr, fault_address, kPageSize);
        return true;
      }));

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    expected_tid = base::PlatformThreadId(
        static_cast<base::PlatformThreadId::UnderlyingType>(
            syscall(__NR_gettid)));
    // Now generate a page fault by reading from the page, this will invoke our
    // Pagefault handler above which will zero fill the page for us and we we'll
    // validate the tid we receive against our tid.
    EXPECT_EQ(*static_cast<int*>(mem), 0);

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test will validate userfaultfd with a simple write fault which will be
// resolved by zero filling the page.
TEST_F(UserfaultFDTest, SimpleZeroPageWriteFault) {
  ASSERT_TRUE(CreateUffd());

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  /* Create a simple mapping with no PTEs */
  ScopedMemory mem(kPageSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kPageSize));

  auto* uffd_ptr = uffd_.get();
  // We will expect our pagefault handler to be called at the address we
  // allocated as a write fault.
  EXPECT_CALL(*handler,
              Pagefault(static_cast<uintptr_t>(mem),
                        UserfaultFDHandler::PagefaultFlags::kWriteFault,
                        /* we didn't register tid */ base::kInvalidThreadId))
      .WillOnce(Invoke([uffd_ptr](uintptr_t fault_address,
                                  UserfaultFDHandler::PagefaultFlags,
                                  base::PlatformThreadId) {
        HandleWithZeroRange(uffd_ptr, fault_address, kPageSize);
        return true;
      }));

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // Now produce a write fault and verify that the value read back is as
    // expected, the page will be zero filled before our store completes.
    static_cast<int*>(mem)[0] = 8675309;

    // Once we get to this point the fault was zero filled and then retried and
    // the store was completed, validate the value.
    EXPECT_EQ(static_cast<int*>(mem)[0], 8675309);

    // And the remainder of the page will have been zero filled as part of the
    // write fault, the second int in the page will be 0.
    EXPECT_EQ(static_cast<int*>(mem)[1], 0);

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test will validate a simple read pagefault which will be resolved using
// a CopyRange.
TEST_F(UserfaultFDTest, SimpleReadFaultResolveWithCopyPage) {
  ASSERT_TRUE(CreateUffd());

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  /* Create a simple mapping with no PTEs */
  ScopedMemory mem(kPageSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kPageSize));

  // We're going to resolve the fault with this page, a page full of 'a'.
  std::vector<uint8_t> buf(kPageSize, 'a');

  auto* uffd_ptr = uffd_.get();

  // we expect that our read fault will happen at our memory address and then we
  // will resolve the fault from the stack page we setup before.
  EXPECT_CALL(*handler,
              Pagefault(static_cast<uintptr_t>(mem),
                        UserfaultFDHandler::PagefaultFlags::kReadFault,
                        /* we didn't register tid */ base::kInvalidThreadId))
      .WillOnce(Invoke([uffd_ptr, &buf](uintptr_t fault_address, uintptr_t,
                                        base::PlatformThreadId) {
        HandleWithCopyRange(uffd_ptr, fault_address,
                            reinterpret_cast<uintptr_t>(buf.data()), kPageSize);
        return true;
      }));

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // Now we generate a read fault and we expect the read to be populated by a
    // page full of 'a's
    EXPECT_EQ(*static_cast<char*>(mem), 'a');

    // And confirm the whole page looks as we expect, all 'a's.
    EXPECT_EQ(memcmp(mem, buf.data(), kPageSize), 0);

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test will validate that a large region can be populated using CopyRange
// and that subsequent reads on later pages will not result in a fault.
TEST_F(UserfaultFDTest, ReadFaultResolveWithCopyPageForMultiplePages) {
  ASSERT_TRUE(CreateUffd());

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  constexpr size_t kNumPages = 20;
  const size_t kRegionSize = kPageSize * kNumPages;

  /* Create a simple mapping with no PTEs */
  ScopedMemory mem(kRegionSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kRegionSize));

  // We're going to resolve the fault with this page, a page full of 'a'.
  std::vector<uint8_t> buf(kRegionSize, 'a');

  auto* uffd_ptr = uffd_.get();

  // we expect that our read fault will happen at our memory address and then we
  // will resolve the fault from the stack page we setup before.
  EXPECT_CALL(*handler,
              Pagefault(static_cast<uintptr_t>(mem),
                        UserfaultFDHandler::PagefaultFlags::kReadFault,
                        /* we didn't register tid */ base::kInvalidThreadId))
      .WillOnce(Invoke([&](uintptr_t fault_address, uintptr_t,
                           base::PlatformThreadId) {
        HandleWithCopyRange(uffd_ptr, fault_address,
                            reinterpret_cast<uintptr_t>(buf.data()),
                            kRegionSize);
        return true;
      }));

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // We generate a read fault. We touch each page, but our handler should only
    // be called once and the WillOnce will make sure of it. The fault handler
    // will have installed the pages for the entire region.
    for (size_t pg_num = 0; pg_num < kNumPages; ++pg_num) {
      EXPECT_EQ(*(static_cast<char*>(mem) + (pg_num * kPageSize)), 'a');

      // And confirm the whole page looks as we expect, all as.
      EXPECT_EQ(memcmp(static_cast<char*>(mem) + (pg_num * kPageSize),
                       buf.data(), kPageSize),
                0);
    }

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test validates that we can repeatedy populate individual pages from a
// larger registered region as each fault happens it will fill that page with a
// repeated character where the character is 'a' + the page number.
TEST_F(UserfaultFDTest,
       ReadFaultResolveWithCopyPageForMultipleIndividualPages) {
  ASSERT_TRUE(CreateUffd());

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  constexpr size_t kNumPages = 20;
  const size_t kRegionSize = kPageSize * kNumPages;

  /* Create a simple mapping with no PTEs */
  ScopedMemory mem(kRegionSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kRegionSize));

  auto* uffd_ptr = uffd_.get();

  // We will expect one read fault for each page.
  EXPECT_CALL(*handler,
              Pagefault(_, UserfaultFDHandler::PagefaultFlags::kReadFault,
                        /* we didn't register tid */ base::kInvalidThreadId))
      .Times(Exactly(kNumPages))  // We should be called once for each page.
      .WillRepeatedly(Invoke([&](uintptr_t fault_address,
                                 UserfaultFDHandler::PagefaultFlags,
                                 base::PlatformThreadId) {
        int page_number =
            (GetPageBase(fault_address) - static_cast<uintptr_t>(mem)) /
            kPageSize;
        std::vector<uint8_t> pg_fill_buf(kPageSize, 'a' + page_number);
        // We determine the page number this fault happened in and then we
        // will populate it with 'a' + the page number so we can confirm our
        // fault handler isn't filling more than one page at a time.
        HandleWithCopyRange(uffd_ptr, fault_address,
                            reinterpret_cast<uintptr_t>(pg_fill_buf.data()),
                            kPageSize);
        return true;
      }));

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // We generate a read fault. We touch each page, but our handler should only
    // be called once and the WillOnce will make sure of it. The fault handler
    // will have installed the pages for the entire region.
    for (size_t pg_num = 0; pg_num < kNumPages; ++pg_num) {
      // We generate our fault at a random point within the page and expect to
      // read the character that the fault handler wrote through that entire
      // page.
      off_t random_offset = base::RandInt(0, kPageSize - 1);
      EXPECT_EQ(
          *(static_cast<char*>(mem) + (pg_num * kPageSize + random_offset)),
          'a' + static_cast<char>(pg_num));
    }

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test validates that if we register with userfaultfd on only a portion of
// a mapping we just receive events on that part.
TEST_F(UserfaultFDTest, ReadFaultRegisteredOnPartialRange) {
  ASSERT_TRUE(CreateUffd());

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  constexpr size_t kNumPages = 20;

  // We only register with userfaultfd on the first 10 pages.
  constexpr size_t kNumPagesRegistered = 10;

  const size_t kRegisterRegionSize = kPageSize * kNumPagesRegistered;
  const size_t kFullRegionSize = kPageSize * kNumPages;

  /* Create a simple mapping with no PTEs */
  ScopedMemory mem(kFullRegionSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kRegisterRegionSize));

  auto* uffd_ptr = uffd_.get();

  // We will expect one read fault for each page in the registered region.
  EXPECT_CALL(*handler,
              Pagefault(_, UserfaultFDHandler::PagefaultFlags::kReadFault,
                        /* we didn't register tid */ base::kInvalidThreadId))
      .Times(
          Exactly(kNumPagesRegistered))  // We should be called once for each
                                         // page we registered the other pages
                                         // will be zero filled by the kernel.
      .WillRepeatedly(Invoke([&](uintptr_t fault_address,
                                 UserfaultFDHandler::PagefaultFlags,
                                 base::PlatformThreadId) {
        int page_number =
            (GetPageBase(fault_address) - static_cast<uintptr_t>(mem)) /
            kPageSize;
        std::vector<uint8_t> pg_fill_buf(kPageSize, 'a' + page_number);
        // We determine the page number this fault happened in and then we
        // will populate it with 'a' + the page number so we can confirm our
        // fault handler isn't filling more than one page at a time.
        HandleWithCopyRange(uffd_ptr, fault_address,
                            reinterpret_cast<uintptr_t>(pg_fill_buf.data()),
                            kPageSize);
        return true;
      }));

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // We generate a read fault. We touch each page, but our handler should only
    // be called once and the WillOnce will make sure of it. The fault handler
    // will have installed the pages for the entire region.
    for (size_t pg_num = 0; pg_num < kNumPagesRegistered; ++pg_num) {
      // We generate our fault at a random point within the page and expect to
      // read the character that the fault handler wrote through that entire
      // page.
      off_t random_offset = base::RandInt(0, kPageSize - 1);
      EXPECT_EQ(
          *(static_cast<char*>(mem) + (pg_num * kPageSize + random_offset)),
          'a' + static_cast<char>(pg_num));
    }

    // And as we cause faults in the remaining pages they should be zero filled
    // by the kernel because we didn't register with them.
    for (size_t pg_num = kNumPagesRegistered; pg_num < kNumPages; ++pg_num) {
      EXPECT_EQ(*(static_cast<uint8_t*>(mem) + (pg_num * kPageSize)), 0);
    }

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test will validate that writing a value to a page causes a fault that
// will be handled before the store completes. It will only register a portion
// of the VMA we create and we will confirm that the non-registered pages will
// be handled by the kernel.
TEST_F(UserfaultFDTest, WriteFaultRegisteredOnPartialRange) {
  ASSERT_TRUE(CreateUffd());

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  constexpr size_t kNumPages = 20;

  // We only register with userfaultfd on the first 10 pages.
  constexpr size_t kNumPagesRegistered = 10;

  const size_t kRegisterRegionSize = kPageSize * kNumPagesRegistered;
  const size_t kFullRegionSize = kPageSize * kNumPages;

  /* Create a simple mapping with no PTEs */
  ScopedMemory mem(kFullRegionSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kRegisterRegionSize));

  auto* uffd_ptr = uffd_.get();

  // We will expect one write fault for each page in the registered region,
  // similar to the read fault test we will fill with 'a' + the page number and
  // or write operation will write an 'X', so we will expect to see the first
  // byte of the page as 'X' with the remainder as that character.
  EXPECT_CALL(*handler,
              Pagefault(_, UserfaultFDHandler::PagefaultFlags::kWriteFault,
                        /* we didn't register tid */ base::kInvalidThreadId))
      .Times(
          Exactly(kNumPagesRegistered))  // We should be called once for each
                                         // page we registered the other pages
                                         // will be zero filled by the kernel.
      .WillRepeatedly(Invoke([&](uintptr_t fault_address,
                                 UserfaultFDHandler::PagefaultFlags,
                                 base::PlatformThreadId) {
        int page_number =
            (GetPageBase(fault_address) - static_cast<uintptr_t>(mem)) /
            kPageSize;
        std::vector<uint8_t> pg_fill_buf(kPageSize, 'a' + page_number);
        // We determine the page number this fault happened in and then we
        // will populate it with 'a' + the page number so we can confirm our
        // fault handler isn't filling more than one page at a time.
        HandleWithCopyRange(uffd_ptr, fault_address,
                            reinterpret_cast<uintptr_t>(pg_fill_buf.data()),
                            kPageSize);
        return true;
      }));

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // Generate a write fault for each page in our range. We will write the byte
    // 'X' as the first byte of the page, the fault handler will populate the
    // whole thing with the single character as described above and when the
    // store completes we will see 'X' followed by the remainder of the page as
    // that character if it was in the region we registered.
    for (size_t pg_num = 0; pg_num < kNumPages; ++pg_num) {
      // This store causes a write fault to the first byte of this page.
      *(static_cast<char*>(mem) + pg_num * kPageSize) = 'X';

      // after the store which caused the fault we expect that byte to be an
      // 'X'.
      EXPECT_EQ(*(static_cast<char*>(mem) + pg_num * kPageSize), 'X');

      // Check the rest of the page contains the character we were expecting.
      // If it was in the range registered it'll be the special character
      // otherwise it'll be filled with zeros by the kernel.
      if (pg_num < kNumPagesRegistered) {
        // Our fault handler ran, so everything after the first byte will be
        // the character we filled.
        for (size_t i = 1; i < kPageSize; ++i) {
          EXPECT_EQ(*(static_cast<char*>(mem) + pg_num * kPageSize + i),
                    'a' + static_cast<char>(pg_num));
        }
      } else {
        // The kernel filled it so everything after that first byte will be 0.
        for (size_t i = 1; i < kPageSize; ++i) {
          EXPECT_EQ(*(static_cast<char*>(mem) + pg_num * kPageSize + i), 0);
        }
      }
    }

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test validates that we receive a Remove event when a PTE is removed.
TEST_F(UserfaultFDTest, SinglePageRemove) {
  ASSERT_TRUE(CreateUffd(UserfaultFD::Features::kFeatureRemove));

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  // Create a simple mapping with no PTEs
  ScopedMemory mem(kPageSize);
  ASSERT_TRUE(mem.is_valid());
  const uintptr_t mapping_end = static_cast<uintptr_t>(mem) + kPageSize;

  // Populate the page before hand.
  memset(mem, 'X', kPageSize);

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kPageSize));

  // We will get a Removed call for the range [mem, mapping_end].
  EXPECT_CALL(*handler, Removed(static_cast<uintptr_t>(mem), mapping_end))
      .WillOnce(Return());

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // Now if we zap the region using MADV_DONTNEED we should see a remove
    // event.
    ASSERT_NE(madvise(mem, kPageSize, MADV_DONTNEED), -1);

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test validates that we can receive a remove event on a range we care
// about. This test will register with two pages but remove 3 and our Remove
// event should only notify for the two we're registered on.
TEST_F(UserfaultFDTest, MultiPageRemove) {
  ASSERT_TRUE(CreateUffd(UserfaultFD::Features::kFeatureRemove));

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  // Create a simple mapping with no PTEs
  constexpr size_t kNumPages = 3;
  constexpr size_t kNumPagesRegistered = 2;
  const size_t total_size = kNumPages * kPageSize;
  const size_t registered_size = kNumPagesRegistered * kPageSize;

  ScopedMemory mem(total_size);
  ASSERT_TRUE(mem.is_valid());

  // Populate the pages before hand.
  memset(mem, 'X', total_size);

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, registered_size));

  // We will get a Removed call for the two pages we registered.
  EXPECT_CALL(*handler, Removed(static_cast<uintptr_t>(mem),
                                static_cast<uintptr_t>(mem) + registered_size))
      .WillOnce(Return());

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // This shouldn't generate a fault, the test would fail if this generates a
    // fault because we don't have an EXPECT_CALL for the fault handler. It
    // doesn't generate a fault because we faulted the pages in earlier.
    ASSERT_EQ(*static_cast<char*>(mem), 'X');

    // Now we zap the entire region causing all 3 PTEs to be blown away, our
    // Removed should notify us about the two pages we registered.
    ASSERT_NE(madvise(mem, total_size, MADV_DONTNEED), -1);

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test validates that we receive an Unmapped event when a mapping is
// unmapped.
TEST_F(UserfaultFDTest, SinglePageUnmap) {
  ASSERT_TRUE(CreateUffd(UserfaultFD::Features::kFeatureUnmap));

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  // Create a simple mapping with no PTEs
  ScopedMemory mem(kPageSize);
  ASSERT_TRUE(mem.is_valid());
  const uintptr_t mapping_end = static_cast<uintptr_t>(mem) + kPageSize;

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kPageSize));

  // We will get a Unmapped call for the range [mem, mapping_end].
  EXPECT_CALL(*handler, Unmapped(static_cast<uintptr_t>(mem), mapping_end))
      .WillOnce(Return());

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // Now we unmap the region to observe the Unmapped event.
    mem.Free();

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test validates that we can receive an unmapped event on a range we care
// about. This test will register with two pages but remove 3 and our Remove
// event should only notify for the two we're registered on.
TEST_F(UserfaultFDTest, MultiPageUnmap) {
  ASSERT_TRUE(CreateUffd(UserfaultFD::Features::kFeatureUnmap));

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  // Create a simple mapping with no PTEs
  constexpr size_t kNumPages = 3;
  constexpr size_t kNumPagesRegistered = 2;
  const size_t total_size = kNumPages * kPageSize;
  const size_t registered_size = kNumPagesRegistered * kPageSize;

  ScopedMemory mem(total_size);
  ASSERT_TRUE(mem.is_valid());

  // Populate the pages before hand.
  memset(mem, 'X', total_size);

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, registered_size));

  // We will get an Unmapped call for the two pages we registered that got
  // unmapped.
  EXPECT_CALL(*handler, Unmapped(static_cast<uintptr_t>(mem),
                                 static_cast<uintptr_t>(mem) + registered_size))
      .WillOnce(Return());

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // This shouldn't generate a fault, the test would fail if this generates a
    // fault because we don't have an EXPECT_CALL for the fault handler. It
    // doesn't generate a fault because we faulted the pages in earlier.
    ASSERT_EQ(*static_cast<char*>(mem), 'X');

    // We take ownership of the memory region so we can unmap the regions we
    // care about.
    void* addr = mem.Release();

    // Now perform the munmap on a portion of the mapping for the region we
    // registered with.
    ASSERT_NE(munmap(addr, registered_size), -1);

    // Finally we can unmap the remaining portion and it should not generate
    // another unmapped event.
    ASSERT_NE(munmap(static_cast<char*>(addr) + registered_size,
                     total_size - registered_size),
              -1);

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test validates that if we unmap just portions of a mapping that we've
// registered we receive an Unmap event for each individual munmap.
TEST_F(UserfaultFDTest, MultiPagePartialUnmap) {
  ASSERT_TRUE(CreateUffd(UserfaultFD::Features::kFeatureUnmap));

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  // Create a simple mapping with no PTEs
  constexpr size_t kNumPages = 3;
  constexpr size_t kNumPagesRegistered = 2;
  const size_t total_size = kNumPages * kPageSize;
  const size_t registered_size = kNumPagesRegistered * kPageSize;

  ScopedMemory mem(total_size);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, registered_size));

  // We will two different unmapped calls, one for each page that we're
  // individually unmapping.
  const uintptr_t page1_start = mem;
  const uintptr_t page1_end = page1_start + kPageSize;
  const uintptr_t page2_start = page1_start + kPageSize;
  const uintptr_t page2_end = page2_start + kPageSize;

  // We expect an unmapped event on the first page.
  EXPECT_CALL(*handler, Unmapped(page1_start, page1_end)).WillOnce(Return());

  // And we expect the second unmapped call for the second page.
  EXPECT_CALL(*handler, Unmapped(page2_start, page2_end)).WillOnce(Return());

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    // We take ownership of the memory region so we can unmap the regions we
    // care about.
    void* addr = mem.Release();

    // We unmap each page individually this should generate two Unmapped events
    // and the final page wasn't registered so we shouldn't get any events about
    // it.
    for (size_t i = 0; i < kNumPages; ++i) {
      char* page_start = static_cast<char*>(addr) + i * kPageSize;
      ASSERT_NE(munmap(page_start, kPageSize), -1);
    }

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test validates that we receive a remap event when using kFeatureRemap.
TEST_F(UserfaultFDTest, SimpleRemap) {
  ASSERT_TRUE(CreateUffd(static_cast<UserfaultFD::Features>(
      UserfaultFD::Features::kFeatureRemap)));

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  ScopedMemory mem(kPageSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kPageSize));

  // We will get a Remapped call for the range mem of length kPageSize.
  EXPECT_CALL(*handler, Remapped(static_cast<uintptr_t>(mem), _,
                                 /* original length */ kPageSize))
      .WillOnce(Return());

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    void* new_addr = mem.Remap(2 * kPageSize);
    ASSERT_NE(new_addr, MAP_FAILED);

    run_loop.Quit();
  });

  run_loop.Run();
}

// This test validates that using kFeatureRemap you observe a remap event and
// any access to the region after the remap will result in a fault at the new
// address.
TEST_F(UserfaultFDTest, RemapAndFaultAtNewAddress) {
  ASSERT_TRUE(CreateUffd(static_cast<UserfaultFD::Features>(
      UserfaultFD::Features::kFeatureRemap)));

  std::unique_ptr<StrictMock<MockUserfaultFDHandler>> handler(
      new StrictMock<MockUserfaultFDHandler>);

  // Because we don't know upfront where the remap will place things we capture
  // them into a variable that goes into the matcher by reference.
  std::atomic<uintptr_t> remapped_start{0};
  std::atomic<uintptr_t> second_page_start{0};
  std::atomic<uintptr_t> observed_remap{0};

  ScopedMemory mem(kPageSize);
  ASSERT_TRUE(mem.is_valid());

  ASSERT_TRUE(uffd_->RegisterRange(UserfaultFD::RegisterMode::kRegisterMissing,
                                   mem, kPageSize));

  // We will get a Remapped call for the range mem of length kPageSize.
  EXPECT_CALL(*handler, Remapped(static_cast<uintptr_t>(mem), _,
                                 /* original length */ kPageSize))
      .WillOnce([&](uintptr_t, uintptr_t new_addr, uintptr_t) {
        // We capture our observed address, we have to do it this way
        // because this callback would be racing with the store of the remap
        // address below. So we just observe it and then validate it at the
        // end of the test.
        observed_remap = new_addr;
        return true;
      });

  // We will expect a fault event from our load instruction that is performed
  // after the remap. Because we don't know exactly where the remap will happen
  // to (because we're not using MREMAP_FIXED), we capture a variable by
  // reference that will be set to the address after remap, this allows us to
  // confirm that the Pagefault call we want is the correct one.
  auto* uffd_ptr = uffd_.get();
  EXPECT_CALL(
      *handler,
      Pagefault(Eq(ByRef(remapped_start)),
                UserfaultFDHandler::PagefaultFlags::kReadFault,
                /* we didn't register for tids */ base::kInvalidThreadId))
      .WillOnce(Invoke([uffd_ptr](uintptr_t fault_address,
                                  UserfaultFDHandler::PagefaultFlags,
                                  base::PlatformThreadId) {
        HandleWithZeroRange(uffd_ptr, fault_address, kPageSize);
        return true;
      }));

  // And because the userfaultfd is attached to the VMA when it's remapped and
  // grown we also have a userfaultfd registered on the new second page.
  EXPECT_CALL(
      *handler,
      Pagefault(Eq(ByRef(second_page_start)),
                UserfaultFDHandler::PagefaultFlags::kReadFault,
                /* we didn't register for tids */ base::kInvalidThreadId))
      .WillOnce(Invoke([uffd_ptr](uintptr_t fault_address,
                                  UserfaultFDHandler::PagefaultFlags,
                                  base::PlatformThreadId) {
        HandleWithZeroRange(uffd_ptr, fault_address, kPageSize);
        return true;
      }));

  ASSERT_TRUE(uffd_->StartWaitingForEvents(std::move(handler)));

  base::RunLoop run_loop;
  ExecuteOffMainThread([&]() {
    mem.Remap(2 * kPageSize);
    ASSERT_TRUE(mem.is_valid());

    // We have to store where we remapped to so our EXCEPT_CALL on the Pagefault
    // can validate that the pagefault is happening at the expected place.
    remapped_start = static_cast<uintptr_t>(mem);
    second_page_start = remapped_start + kPageSize;

    // Now we generate a read fault at the new address and our fault handler
    // will zero fill it.
    EXPECT_EQ(*static_cast<char*>(mem), 0);

    // Because we grew the mapping as part of mremap we should also be able to
    // trigger a fault at the next page.
    EXPECT_EQ(*(static_cast<char*>(mem) + kPageSize), 0);

    run_loop.Quit();
  });

  run_loop.Run();

  // Now validate the observed remap address.
  EXPECT_EQ(observed_remap, remapped_start);
}

}  // namespace userspace_swap
}  // namespace memory
}  // namespace ash