1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chromeos/ash/components/system_info/system_info_util.h"
#include <optional>
#include <string>
#include <string_view>
#include <vector>
#include "ash/strings/grit/ash_strings.h"
#include "base/metrics/histogram_functions.h"
#include "base/time/time.h"
#include "chromeos/ash/components/system_info/cpu_usage_data.h"
#include "chromeos/ash/services/cros_healthd/public/mojom/cros_healthd_probe.mojom.h"
#include "chromeos/dbus/power_manager/power_supply_properties.pb.h"
#include "ui/base/l10n/l10n_util.h"
#include "ui/base/l10n/time_format.h"
namespace system_info {
namespace {
namespace healthd = ash::cros_healthd::mojom;
constexpr int kMilliampsInAnAmp = 1000;
void EmitCrosHealthdProbeError(std::string_view source_type,
healthd::ErrorType error_type,
const std::string& metric_name_for_histogram) {
// `metric_name` may be empty in which case we do not want a metric send
// attempted.
if (metric_name_for_histogram.empty()) {
LOG(WARNING)
<< "Ignoring request to record metric for ProbeError of error_type: "
<< error_type << " for unknown source_stuct: " << source_type;
return;
}
base::UmaHistogramEnumeration(metric_name_for_histogram, error_type);
}
template <typename TResult, typename TTag>
bool CheckResponse(const TResult& result,
TTag expected_tag,
std::string_view type_name,
const std::string& metric_name_for_histogram) {
if (result.is_null()) {
LOG(ERROR) << type_name << "not found in croshealthd response.";
return false;
}
auto tag = result->which();
if (tag == TTag::kError) {
EmitCrosHealthdProbeError(type_name, result->get_error()->type,
metric_name_for_histogram);
LOG(ERROR) << "Error retrieving " << type_name
<< "from croshealthd: " << result->get_error()->msg;
return false;
}
DCHECK_EQ(tag, expected_tag);
return true;
}
} // namespace
bool ShouldDisplayBatteryTime(const base::TimeDelta& time) {
// Put limits on the maximum and minimum battery time-to-full or time-to-empty
// that should be displayed in the UI. If the current is close to zero,
// battery time estimates can get very large; avoid displaying these large
// numbers.
return time >= base::Minutes(1) && time <= base::Days(1);
}
int GetRoundedBatteryPercent(double battery_percent) {
// Minimum battery percentage rendered in UI.
constexpr int kMinBatteryPercent = 1;
return std::max(kMinBatteryPercent, base::ClampRound(battery_percent));
}
void SplitTimeIntoHoursAndMinutes(const base::TimeDelta& time,
int* hours,
int* minutes) {
DCHECK(hours);
DCHECK(minutes);
*minutes = base::ClampRound(time / base::Minutes(1));
*hours = *minutes / 60;
*minutes %= 60;
}
void EmitBatteryDataError(BatteryDataError error,
const std::string& histogram_prefix) {
if (!histogram_prefix.empty()) {
base::UmaHistogramEnumeration(histogram_prefix, error);
}
}
healthd::MemoryInfo* GetMemoryInfo(
const healthd::TelemetryInfo& info,
const std::string& metric_name_for_histogram) {
const healthd::MemoryResultPtr& memory_result = info.memory_result;
if (!CheckResponse(memory_result, healthd::MemoryResult::Tag::kMemoryInfo,
"memory info", metric_name_for_histogram)) {
return nullptr;
}
return memory_result->get_memory_info().get();
}
healthd::CpuInfo* GetCpuInfo(const healthd::TelemetryInfo& info,
const std::string& metric_name_for_histogram) {
const healthd::CpuResultPtr& cpu_result = info.cpu_result;
if (!CheckResponse(cpu_result, healthd::CpuResult::Tag::kCpuInfo, "cpu info",
metric_name_for_histogram)) {
return nullptr;
}
return cpu_result->get_cpu_info().get();
}
const healthd::BatteryInfo* GetBatteryInfo(
const healthd::TelemetryInfo& info,
const std::string& metric_name_for_histogram,
const std::string& battery_error_histogram) {
const healthd::BatteryResultPtr& battery_result = info.battery_result;
if (!CheckResponse(battery_result, healthd::BatteryResult::Tag::kBatteryInfo,
"battery info", metric_name_for_histogram)) {
return nullptr;
}
const healthd::BatteryInfo* battery_info =
battery_result->get_battery_info().get();
if (battery_info->charge_full == 0) {
LOG(ERROR) << "charge_full from battery_info should not be zero.";
EmitBatteryDataError(BatteryDataError::kExpectationNotMet,
battery_error_histogram);
return nullptr;
}
// Handle values in battery_info which could cause a SIGFPE. See b/227485637.
if (isnan(battery_info->charge_full) ||
isnan(battery_info->charge_full_design) ||
battery_info->charge_full_design == 0) {
LOG(ERROR) << "battery_info values could cause SIGFPE crash: { "
<< "charge_full_design: " << battery_info->charge_full_design
<< ", charge_full: " << battery_info->charge_full << " }";
return nullptr;
}
return battery_info;
}
CpuUsageData CalculateCpuUsage(
const std::vector<healthd::LogicalCpuInfoPtr>& logical_cpu_infos) {
CpuUsageData new_usage_data;
DCHECK_GE(logical_cpu_infos.size(), 1u);
for (const auto& logical_cpu_ptr : logical_cpu_infos) {
new_usage_data += CpuUsageData(logical_cpu_ptr->user_time_user_hz,
logical_cpu_ptr->system_time_user_hz,
logical_cpu_ptr->idle_time_user_hz);
}
return new_usage_data;
}
void PopulateCpuUsage(CpuUsageData new_cpu_usage_data,
CpuUsageData previous_cpu_usage_data,
CpuData& cpu_usage) {
CpuUsageData delta = new_cpu_usage_data - previous_cpu_usage_data;
const uint64_t total_delta = delta.GetTotalTime();
if (total_delta == 0) {
LOG(ERROR) << "Device reported having zero logical CPUs.";
return;
}
cpu_usage.SetPercentUsageUser(100 * delta.GetUserTime() / total_delta);
cpu_usage.SetPercentUsageSystem(100 * delta.GetSystemTime() / total_delta);
cpu_usage.SetPercentUsageFree(100 * delta.GetIdleTime() / total_delta);
}
void PopulateAverageCpuTemperature(
const ash::cros_healthd::mojom::CpuInfo& cpu_info,
CpuData& cpu_usage) {
if (cpu_info.temperature_channels.empty()) {
LOG(ERROR) << "Device reported having 0 temperature channels.";
return;
}
uint32_t cumulative_total = 0;
for (const auto& temp_channel_ptr : cpu_info.temperature_channels) {
cumulative_total += temp_channel_ptr->temperature_celsius;
}
// Integer division.
cpu_usage.SetAverageCpuTempCelsius(cumulative_total /
cpu_info.temperature_channels.size());
}
void PopulateAverageScaledClockSpeed(const healthd::CpuInfo& cpu_info,
CpuData& cpu_usage) {
if (cpu_info.physical_cpus.empty() ||
cpu_info.physical_cpus[0]->logical_cpus.empty()) {
LOG(ERROR) << "Device reported having 0 logical CPUs.";
return;
}
uint32_t total_scaled_ghz = 0;
for (const auto& logical_cpu_ptr : cpu_info.physical_cpus[0]->logical_cpus) {
total_scaled_ghz += logical_cpu_ptr->scaling_current_frequency_khz;
}
// Integer division.
cpu_usage.SetScalingAverageCurrentFrequencyKhz(
total_scaled_ghz / cpu_info.physical_cpus[0]->logical_cpus.size());
}
void PopulateBatteryHealth(const healthd::BatteryInfo& battery_info,
BatteryHealth& battery_health) {
battery_health.SetCycleCount(battery_info.cycle_count);
double charge_full_now_milliamp_hours =
battery_info.charge_full * kMilliampsInAnAmp;
double charge_full_design_milliamp_hours =
battery_info.charge_full_design * kMilliampsInAnAmp;
battery_health.SetBatteryWearPercentage(
std::min({(100 * charge_full_now_milliamp_hours /
charge_full_design_milliamp_hours),
100.0}));
}
std::u16string GetBatteryTimeText(base::TimeDelta time_left) {
int hour = 0;
int min = 0;
SplitTimeIntoHoursAndMinutes(time_left, &hour, &min);
std::u16string time_text;
if (hour == 0 || min == 0) {
// Display only one unit ("2 hours" or "10 minutes").
return ui::TimeFormat::Simple(ui::TimeFormat::FORMAT_DURATION,
ui::TimeFormat::LENGTH_LONG, time_left);
}
return ui::TimeFormat::Detailed(ui::TimeFormat::FORMAT_DURATION,
ui::TimeFormat::LENGTH_LONG,
-1, // force hour and minute output
time_left);
}
} // namespace system_info
|