1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/attribution_reporting/privacy_math.h"
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <functional>
#include <limits>
#include <optional>
#include <utility>
#include <vector>
#include "base/check_op.h"
#include "base/metrics/histogram_functions.h"
#include "base/notreached.h"
#include "base/numerics/checked_math.h"
#include "base/numerics/clamped_math.h"
#include "base/numerics/safe_conversions.h"
#include "base/rand_util.h"
#include "base/types/expected.h"
#include "base/types/expected_macros.h"
#include "components/attribution_reporting/attribution_scopes_data.h"
#include "components/attribution_reporting/constants.h"
#include "components/attribution_reporting/event_report_windows.h"
#include "components/attribution_reporting/max_event_level_reports.h"
#include "components/attribution_reporting/source_type.mojom.h"
#include "components/attribution_reporting/trigger_config.h"
namespace attribution_reporting {
namespace {
// Although the theoretical maximum number of trigger states exceeds 32 bits,
// we've chosen to only support a maximal trigger state cardinality of
// `UINT32_MAX` due to the randomized response generation rate being close
// enough to 1 for that number of states to not warrant the extra cost in
// resources for larger ints. The arithmetic in this file mostly adheres to that
// by way of overflow checking, with only certain exceptions applying. If the
// max trigger state cardinality is ever increased, the typings in this file
// must be changed to support that.
// Controls the max number of report states allowed for a given source
// registration.
uint32_t g_max_trigger_state_cardinality = std::numeric_limits<uint32_t>::max();
} // namespace
base::expected<uint32_t, RandomizedResponseError> GetNumStates(
const TriggerDataSet& trigger_data,
const EventReportWindows& event_report_windows,
const MaxEventLevelReports max_event_level_reports) {
const int max_reports = max_event_level_reports;
if (trigger_data.trigger_data().empty() || max_reports == 0) {
return 1;
}
size_t num_windows = event_report_windows.end_times().size();
base::CheckedNumeric<uint32_t> num_states =
internal::GetNumberOfStarsAndBarsSequences(
/*num_stars=*/static_cast<uint32_t>(max_reports),
/*num_bars=*/static_cast<uint32_t>(
trigger_data.trigger_data().size() * num_windows));
if (!num_states.IsValid() ||
num_states.ValueOrDie() > g_max_trigger_state_cardinality) {
return base::unexpected(
RandomizedResponseError::kExceedsTriggerStateCardinalityLimit);
}
return num_states.ValueOrDie();
}
RandomizedResponseData::RandomizedResponseData(double rate,
RandomizedResponse response)
: rate_(rate), response_(std::move(response)) {
CHECK_GE(rate_, 0);
CHECK_LE(rate_, 1);
}
RandomizedResponseData::~RandomizedResponseData() = default;
RandomizedResponseData::RandomizedResponseData(const RandomizedResponseData&) =
default;
RandomizedResponseData& RandomizedResponseData::operator=(
const RandomizedResponseData&) = default;
RandomizedResponseData::RandomizedResponseData(RandomizedResponseData&&) =
default;
RandomizedResponseData& RandomizedResponseData::operator=(
RandomizedResponseData&&) = default;
uint32_t MaxTriggerStateCardinality() {
return g_max_trigger_state_cardinality;
}
double PrivacyMathConfig::GetMaxChannelCapacity(
mojom::SourceType source_type) const {
switch (source_type) {
case mojom::SourceType::kNavigation:
return max_channel_capacity_navigation;
case mojom::SourceType::kEvent:
return max_channel_capacity_event;
}
NOTREACHED();
}
double PrivacyMathConfig::GetMaxChannelCapacityScopes(
mojom::SourceType source_type) const {
switch (source_type) {
case mojom::SourceType::kNavigation:
return max_channel_capacity_scopes_navigation;
case mojom::SourceType::kEvent:
return max_channel_capacity_scopes_event;
}
NOTREACHED();
}
bool GenerateWithRate(double r) {
CHECK_GE(r, 0);
CHECK_LE(r, 1);
return r > 0 && (r == 1 || base::RandDouble() < r);
}
double GetRandomizedResponseRate(uint32_t num_states, double epsilon) {
CHECK_GT(num_states, 0u);
return num_states / (num_states - 1.0 + std::exp(epsilon));
}
bool IsValid(const RandomizedResponse& response,
const TriggerDataSet& trigger_data,
const EventReportWindows& event_report_windows,
MaxEventLevelReports max_event_level_reports) {
if (!response.has_value()) {
return true;
}
return base::MakeStrictNum(response->size()) <=
static_cast<int>(max_event_level_reports) &&
std::ranges::all_of(
*response, [&](const FakeEventLevelReport& report) {
const bool has_trigger_data =
trigger_data.trigger_data().contains(report.trigger_data);
return has_trigger_data && report.window_index >= 0 &&
base::MakeStrictNum(report.window_index) <
event_report_windows.end_times().size();
});
}
namespace internal {
base::CheckedNumeric<uint32_t> BinomialCoefficient(
base::StrictNumeric<uint32_t> strict_n,
base::StrictNumeric<uint32_t> strict_k) {
uint32_t n = strict_n;
uint32_t k = strict_k;
if (k > n) {
return 0;
}
// Speed up some trivial cases.
if (k == n || n == 0) {
return 1;
}
// BinomialCoefficient(n, k) == BinomialCoefficient(n, n - k),
// So simplify if possible. Underflow not possible as we know k < n at this
// point.
if (k > n - k) {
k = n - k;
}
// (n choose k) = n (n -1) ... (n - (k - 1)) / k!
// = mul((n + 1 - i) / i), i from 1 -> k.
//
// You might be surprised that this algorithm works just fine with integer
// division (i.e. division occurs cleanly with no remainder). However, this is
// true for a very simple reason. Imagine a value of `i` causes division with
// remainder in the below algorithm. This immediately implies that
// (n choose i) is fractional, which we know is not the case.
base::CheckedNumeric<uint64_t> result = 1;
for (uint32_t i = 1; i <= k; i++) {
uint32_t term = n - i + 1;
base::CheckedNumeric<uint64_t> temp_result = result * term;
DCHECK(!temp_result.IsValid() || (temp_result % i).ValueOrDie() == 0);
result = temp_result / i;
}
return result.Cast<uint32_t>();
}
// Computes the `combination_index`-th lexicographically smallest k-combination.
// https://en.wikipedia.org/wiki/Combinatorial_number_system
// A k-combination is a sequence of k non-negative integers in decreasing order.
// a_k > a_{k-1} > ... > a_2 > a_1 >= 0.
// k-combinations can be ordered lexicographically, with the smallest
// k-combination being a_k=k-1, a_{k-1}=k-2, .., a_1=0. Given an index
// `combination_index`>=0, and an order k, this method returns the
// `combination_index`-th smallest k-combination.
//
// Given an index `combination_index`, the `combination_index`-th k-combination
// is the unique set of k non-negative integers
// a_k > a_{k-1} > ... > a_2 > a_1 >= 0
// such that `combination_index` = \sum_{i=1}^k {a_i}\choose{i}
//
// For k >= 2, we find this set via a simple greedy algorithm.
// http://math0.wvstateu.edu/~baker/cs405/code/Combinadics.html
//
// The k = 0 case is trivially the empty set, and the k = 1 case is
// trivially just `combination_index`.
std::vector<uint32_t> GetKCombinationAtIndex(
base::StrictNumeric<uint32_t> combination_index,
base::StrictNumeric<uint32_t> strict_k) {
uint32_t k = strict_k;
DCHECK_LE(k, kMaxSettableEventLevelAttributionsPerSource);
std::vector<uint32_t> output_k_combination;
output_k_combination.reserve(k);
if (k == 0u) {
return output_k_combination;
}
if (k == 1u) {
output_k_combination.push_back(combination_index);
return output_k_combination;
}
// To find a_k, iterate candidates upwards from 0 until we've found the
// maximum a such that (a choose k) <= `combination_index`. Let a_k = a. Use
// the previous binomial coefficient to compute the next one. Note: possible
// to speed this up via something other than incremental search.
uint32_t target = combination_index;
uint32_t candidate = k - 1;
// BinomialCoefficient(candidate, k)
uint64_t binomial_coefficient = 0;
// BinomialCoefficient(candidate+1, k)
uint64_t next_binomial_coefficient = 1;
while (next_binomial_coefficient <= target) {
DCHECK_LT(candidate, std::numeric_limits<uint32_t>::max());
candidate++;
binomial_coefficient = next_binomial_coefficient;
// If the returned value from `BinomialCoefficient` is invalid, the DCHECK
// would fail anyways, so it is safe to not validate.
DCHECK(binomial_coefficient ==
BinomialCoefficient(candidate, k).ValueOrDie());
// (n + 1 choose k) = (n choose k) * (n + 1) / (n + 1 - k)
// Safe because candidate <= binomial_coefficient <= UINT32_MAX.
// Therefore binomial_coefficient * (candidate + 1) <= UINT32_MAX *
// (UINT32_MAX + 1) <= UINT64_MAX.
next_binomial_coefficient = binomial_coefficient * (candidate + 1);
next_binomial_coefficient /= candidate + 1 - k;
}
// We know from the k-combination definition, all subsequent values will be
// strictly decreasing. Find them all by decrementing `candidate`.
// Use the previous binomial coefficient to compute the next one.
uint32_t current_k = k;
while (true) {
// The optimized code below maintains this loop invariant.
DCHECK(binomial_coefficient ==
BinomialCoefficient(candidate, current_k).ValueOrDie());
if (binomial_coefficient <= target) {
output_k_combination.push_back(candidate);
bool valid =
base::CheckSub(target, binomial_coefficient).AssignIfValid(&target);
DCHECK(valid);
if (output_k_combination.size() == static_cast<size_t>(k)) {
DCHECK_EQ(target, 0u);
return output_k_combination;
}
// (n - 1 choose k - 1) = (n choose k) * k / n
// Safe because binomial_coefficient * current_k <= combination_index * k
// <= UINT32_MAX * UINT32_MAX < UINT64_MAX.
binomial_coefficient = binomial_coefficient * current_k / candidate;
current_k--;
candidate--;
} else {
// (n - 1 choose k) = (n choose k) * (n - k) / n
// Safe because binomial_coefficient * (candidate - current_k) <=
// combination_index * k <= UINT32_MAX * UINT32_MAX < UINT64_MAX.
binomial_coefficient =
binomial_coefficient * (candidate - current_k) / candidate;
candidate--;
}
DCHECK(base::IsValueInRangeForNumericType<uint32_t>(binomial_coefficient));
}
}
base::CheckedNumeric<uint32_t> GetNumberOfStarsAndBarsSequences(
base::StrictNumeric<uint32_t> num_stars,
base::StrictNumeric<uint32_t> num_bars) {
return BinomialCoefficient(
static_cast<uint32_t>(num_stars) + static_cast<uint32_t>(num_bars),
num_stars);
}
base::expected<std::vector<uint32_t>, std::monostate> GetStarIndices(
base::StrictNumeric<uint32_t> num_stars,
base::StrictNumeric<uint32_t> num_bars,
base::StrictNumeric<uint32_t> sequence_index) {
const base::CheckedNumeric<uint32_t> num_sequences =
GetNumberOfStarsAndBarsSequences(num_stars, num_bars);
if (!num_sequences.IsValid()) {
return base::unexpected(std::monostate());
}
DCHECK(sequence_index < num_sequences.ValueOrDie());
return GetKCombinationAtIndex(sequence_index, num_stars);
}
std::vector<uint32_t> GetBarsPrecedingEachStar(std::vector<uint32_t> out) {
DCHECK(std::ranges::is_sorted(out, std::greater{}));
for (size_t i = 0u; i < out.size(); i++) {
uint32_t star_index = out[i];
// There are `star_index` prior positions in the sequence, and `i` prior
// stars, so there are `star_index` - `i` prior bars.
out[i] = star_index - (out.size() - 1 - i);
}
return out;
}
double BinaryEntropy(double p) {
if (p == 0 || p == 1) {
return 0;
}
return -p * log2(p) - (1 - p) * log2(1 - p);
}
double ComputeChannelCapacity(
const base::StrictNumeric<uint32_t> num_states_strict,
const double randomized_response_rate) {
uint32_t num_states = num_states_strict;
CHECK_GT(num_states, 0u);
CHECK_GE(randomized_response_rate, 0);
CHECK_LE(randomized_response_rate, 1);
// The capacity of a unary channel is 0. This follows from the definition
// of mutual information.
if (num_states == 1u || randomized_response_rate == 1) {
return 0;
}
double num_states_double = static_cast<double>(num_states);
double p =
randomized_response_rate * (num_states_double - 1) / num_states_double;
return log2(num_states_double) - BinaryEntropy(p) -
p * log2(num_states_double - 1);
}
double ComputeChannelCapacityScopes(
const base::StrictNumeric<uint32_t> num_states,
const base::StrictNumeric<uint32_t> max_event_states,
const base::StrictNumeric<uint32_t> attribution_scope_limit) {
CHECK(num_states > 0u);
CHECK(attribution_scope_limit > 0u);
// Ensure that `double` arithmetic is performed here instead of `uint32_t`,
// which can overflow and produce incorrect results, e.g.
// https://crbug.com/366998247.
double total_states = static_cast<double>(num_states) +
static_cast<double>(max_event_states) *
(static_cast<double>(attribution_scope_limit) - 1);
return log2(total_states);
}
base::expected<std::vector<FakeEventLevelReport>, RandomizedResponseError>
GetFakeReportsForSequenceIndex(
const TriggerDataSet& trigger_data,
const EventReportWindows& event_report_windows,
const MaxEventLevelReports max_event_level_reports,
base::StrictNumeric<uint32_t> random_stars_and_bars_sequence_index) {
const int trigger_data_cardinality = trigger_data.trigger_data().size();
const int max_reports = max_event_level_reports;
ASSIGN_OR_RETURN(
std::vector<uint32_t> stars,
GetStarIndices(
/*num_stars=*/static_cast<uint32_t>(max_reports),
/*num_bars=*/
static_cast<uint32_t>(trigger_data_cardinality *
event_report_windows.end_times().size()),
/*sequence_index=*/random_stars_and_bars_sequence_index),
[](std::monostate) {
return RandomizedResponseError::kExceedsTriggerStateCardinalityLimit;
});
const std::vector<uint32_t> bars_preceding_each_star =
GetBarsPrecedingEachStar(std::move(stars));
std::vector<FakeEventLevelReport> fake_reports;
// an output state is uniquely determined by an ordering of c stars and w*d
// bars, where:
// w = the number of reporting windows
// c = the maximum number of reports for a source
// d = the trigger data cardinality for a source
for (uint32_t num_bars : bars_preceding_each_star) {
if (num_bars == 0) {
continue;
}
auto result = std::div(num_bars - 1, trigger_data_cardinality);
const int trigger_data_index = result.rem;
CHECK_LT(trigger_data_index, trigger_data_cardinality);
fake_reports.push_back({
.trigger_data =
*std::next(trigger_data.trigger_data().begin(), trigger_data_index),
.window_index = result.quot,
});
}
DCHECK_LE(fake_reports.size(), static_cast<size_t>(max_reports));
return fake_reports;
}
} // namespace internal
base::expected<RandomizedResponseData, RandomizedResponseError>
DoRandomizedResponse(const TriggerDataSet& trigger_data,
const EventReportWindows& event_report_windows,
const MaxEventLevelReports max_event_level_reports,
double epsilon,
mojom::SourceType source_type,
const std::optional<AttributionScopesData>& scopes_data,
const PrivacyMathConfig& config) {
ASSIGN_OR_RETURN(const uint32_t num_states,
GetNumStates(trigger_data, event_report_windows,
max_event_level_reports));
base::UmaHistogramCounts100000("Conversions.NumTriggerStates",
base::ClampedNumeric(num_states));
double rate = GetRandomizedResponseRate(num_states, epsilon);
double channel_capacity = internal::ComputeChannelCapacity(num_states, rate);
if (channel_capacity > config.GetMaxChannelCapacity(source_type)) {
return base::unexpected(
RandomizedResponseError::kExceedsChannelCapacityLimit);
}
if (scopes_data.has_value()) {
if (source_type == mojom::SourceType::kEvent &&
num_states > scopes_data->max_event_states()) {
return base::unexpected(
RandomizedResponseError::kExceedsMaxEventStatesLimit);
}
double scopes_channel_capacity = internal::ComputeChannelCapacityScopes(
num_states, scopes_data->max_event_states(),
scopes_data->attribution_scope_limit());
if (scopes_channel_capacity >
config.GetMaxChannelCapacityScopes(source_type)) {
return base::unexpected(
RandomizedResponseError::kExceedsScopesChannelCapacityLimit);
}
}
std::optional<std::vector<FakeEventLevelReport>> fake_reports;
if (GenerateWithRate(rate)) {
uint32_t sequence_index = base::RandGenerator(num_states);
ASSIGN_OR_RETURN(fake_reports,
internal::GetFakeReportsForSequenceIndex(
trigger_data, event_report_windows,
max_event_level_reports, sequence_index));
}
return RandomizedResponseData(rate, std::move(fake_reports));
}
ScopedMaxTriggerStateCardinalityForTesting::
ScopedMaxTriggerStateCardinalityForTesting(
uint32_t max_trigger_state_cardinality)
: previous_(g_max_trigger_state_cardinality) {
CHECK_GT(max_trigger_state_cardinality, 0u);
g_max_trigger_state_cardinality = max_trigger_state_cardinality;
}
ScopedMaxTriggerStateCardinalityForTesting::
~ScopedMaxTriggerStateCardinalityForTesting() {
g_max_trigger_state_cardinality = previous_;
}
} // namespace attribution_reporting
|