1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/discardable_memory/common/discardable_shared_memory_heap.h"
#include <inttypes.h>
#include <algorithm>
#include <bit>
#include <memory>
#include <string>
#include <utility>
#include "base/containers/contains.h"
#include "base/format_macros.h"
#include "base/memory/aligned_memory.h"
#include "base/memory/discardable_shared_memory.h"
#include "base/memory/page_size.h"
#include "base/memory/ptr_util.h"
#include "base/metrics/histogram_macros.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/memory_dump_manager.h"
namespace discardable_memory {
namespace {
bool IsInFreeList(DiscardableSharedMemoryHeap::Span* span) {
return span->previous() || span->next();
}
} // namespace
DiscardableSharedMemoryHeap::Span::Span(
base::DiscardableSharedMemory* shared_memory,
size_t first_block,
size_t num_blocks,
DiscardableSharedMemoryHeap::ScopedMemorySegment* memory_segment)
: memory_segment_(memory_segment),
shared_memory_(shared_memory),
first_block_(first_block),
num_blocks_(num_blocks) {}
DiscardableSharedMemoryHeap::ScopedMemorySegment::ScopedMemorySegment(
DiscardableSharedMemoryHeap* heap,
std::unique_ptr<base::DiscardableSharedMemory> shared_memory,
size_t size,
int32_t id,
base::OnceClosure deleted_callback)
: heap_(heap),
shared_memory_(std::move(shared_memory)),
size_(size),
id_(id),
deleted_callback_(std::move(deleted_callback)) {}
base::span<uint8_t> DiscardableSharedMemoryHeap::Span::memory() const {
return shared_memory_->memory().subspan(first_block_ * base::GetPageSize(),
num_blocks_ * base::GetPageSize());
}
DiscardableSharedMemoryHeap::ScopedMemorySegment*
DiscardableSharedMemoryHeap::Span::GetScopedMemorySegmentForTesting() const {
return memory_segment_;
}
DiscardableSharedMemoryHeap::ScopedMemorySegment::~ScopedMemorySegment() {
heap_->ReleaseMemory(shared_memory_.get(), size_);
std::move(deleted_callback_).Run();
}
bool DiscardableSharedMemoryHeap::ScopedMemorySegment::IsUsed() const {
return heap_->IsMemoryUsed(shared_memory_.get(), size_);
}
bool DiscardableSharedMemoryHeap::ScopedMemorySegment::IsResident() const {
return heap_->IsMemoryResident(shared_memory_.get());
}
bool DiscardableSharedMemoryHeap::ScopedMemorySegment::ContainsSpan(
Span* span) const {
return shared_memory_.get() == span->shared_memory();
}
base::trace_event::MemoryAllocatorDump*
DiscardableSharedMemoryHeap::ScopedMemorySegment::CreateMemoryAllocatorDump(
Span* span,
size_t block_size,
const char* name,
base::trace_event::ProcessMemoryDump* pmd) const {
DCHECK_EQ(shared_memory_.get(), span->shared_memory());
base::trace_event::MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(name);
dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(span->num_blocks_ * block_size));
pmd->AddSuballocation(
dump->guid(),
base::StringPrintf("discardable/segment_%d/allocated_objects", id_));
return dump;
}
void DiscardableSharedMemoryHeap::ScopedMemorySegment::OnMemoryDump(
base::trace_event::ProcessMemoryDump* pmd) const {
heap_->OnMemoryDump(shared_memory_.get(), size_, id_, pmd);
}
DiscardableSharedMemoryHeap::DiscardableSharedMemoryHeap()
: block_size_(base::GetPageSize()) {
DCHECK_NE(block_size_, 0u);
DCHECK(std::has_single_bit(block_size_));
}
DiscardableSharedMemoryHeap::~DiscardableSharedMemoryHeap() {
memory_segments_.clear();
DCHECK_EQ(num_blocks_, 0u);
DCHECK_EQ(num_free_blocks_, 0u);
DCHECK(!base::Contains(free_spans_, false, &base::LinkedList<Span>::empty));
}
std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Grow(
std::unique_ptr<base::DiscardableSharedMemory> shared_memory,
size_t size,
int32_t id,
base::OnceClosure deleted_callback) {
// Memory must be aligned to block size.
DCHECK(base::IsAligned(shared_memory->memory().data(), block_size_));
DCHECK(base::IsAligned(size, block_size_));
auto* raw_shared_memory = shared_memory.get();
auto scoped_memory_segment = std::make_unique<ScopedMemorySegment>(
this, std::move(shared_memory), size, id, std::move(deleted_callback));
std::unique_ptr<Span> span(new Span(raw_shared_memory, 0u, size / block_size_,
scoped_memory_segment.get()));
CHECK(spans_.find(SpanBeginKey(*span)) == spans_.end());
CHECK(spans_.find(SpanEndKey(*span)) == spans_.end());
RegisterSpan(span.get());
num_blocks_ += span->num_blocks_;
// Start tracking if segment is resident by adding it to |memory_segments_|.
memory_segments_.push_back(std::move(scoped_memory_segment));
return span;
}
void DiscardableSharedMemoryHeap::MergeIntoFreeLists(
std::unique_ptr<Span> span) {
MergeIntoFreeListsClean(std::move(span));
}
void DiscardableSharedMemoryHeap::MergeIntoFreeListsClean(
std::unique_ptr<Span> span) {
DCHECK(span->shared_memory_);
// First add length of |span| to |num_free_blocks_|.
num_free_blocks_ += span->num_blocks_;
// Merge with previous span if possible.
auto begin_key = SpanBeginKey(*span);
begin_key.second -= 1u;
auto prev_it = spans_.find(begin_key);
if (prev_it != spans_.end() && IsInFreeList(prev_it->second)) {
std::unique_ptr<Span> prev = RemoveFromFreeList(prev_it->second);
DCHECK_EQ(prev->first_block_ + prev->num_blocks_, span->first_block_);
UnregisterSpan(prev.get());
if (span->num_blocks_ > 1) {
spans_.erase(SpanBeginKey(*span));
}
span->first_block_ -= prev->num_blocks_;
span->num_blocks_ += prev->num_blocks_;
spans_[SpanBeginKey(*span)] = span.get();
}
// Merge with next span if possible.
auto end_key = SpanEndKey(*span);
end_key.second += 1u;
auto next_it = spans_.find(end_key);
if (next_it != spans_.end() && IsInFreeList(next_it->second)) {
std::unique_ptr<Span> next = RemoveFromFreeList(next_it->second);
DCHECK_EQ(next->first_block_, span->first_block_ + span->num_blocks_);
UnregisterSpan(next.get());
if (span->num_blocks_ > 1) {
spans_.erase(SpanEndKey(*span));
}
span->num_blocks_ += next->num_blocks_;
spans_[SpanEndKey(*span)] = span.get();
}
InsertIntoFreeList(std::move(span));
}
std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Split(Span* span, size_t blocks) {
DCHECK(blocks);
CHECK_LT(blocks, span->num_blocks_);
std::unique_ptr<Span> leftover(
new Span(span->shared_memory_, span->first_block_ + blocks,
span->num_blocks_ - blocks, span->memory_segment_));
CHECK(leftover->num_blocks_ == 1u ||
spans_.find(SpanBeginKey(*leftover)) == spans_.end());
RegisterSpan(leftover.get());
span->num_blocks_ = blocks;
spans_[SpanEndKey(*span)] = span;
return leftover;
}
std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::SearchFreeLists(size_t blocks, size_t slack) {
CHECK(blocks);
size_t length = blocks;
size_t max_length = blocks + slack;
// Search array of free lists for a suitable span.
while (length < std::size(free_spans_)) {
const base::LinkedList<Span>& free_spans = free_spans_[length - 1u];
if (!free_spans.empty()) {
// Return the most recently used span located in tail.
return Carve(free_spans.tail()->value(), blocks);
}
// Return early after surpassing |max_length|.
if (++length > max_length) {
return nullptr;
}
}
const base::LinkedList<Span>& overflow_free_spans =
free_spans_[std::size(free_spans_) - 1u];
// Search overflow free list for a suitable span. Starting with the most
// recently used span located in tail and moving towards head.
for (base::LinkNode<Span>* node = overflow_free_spans.tail();
node != overflow_free_spans.end(); node = node->previous()) {
Span* span = node->value();
if (span->num_blocks_ >= blocks && span->num_blocks_ <= max_length) {
return Carve(span, blocks);
}
}
return nullptr;
}
void DiscardableSharedMemoryHeap::ReleaseFreeMemory() {
// Erase all free segments after rearranging the segments in such a way
// that used segments precede all free segments.
memory_segments_.erase(
std::partition(memory_segments_.begin(), memory_segments_.end(),
[](const std::unique_ptr<ScopedMemorySegment>& segment) {
return segment->IsUsed();
}),
memory_segments_.end());
}
void DiscardableSharedMemoryHeap::ReleasePurgedMemory() {
// Erase all purged segments after rearranging the segments in such a way
// that resident segments precede all purged segments.
memory_segments_.erase(
std::partition(memory_segments_.begin(), memory_segments_.end(),
[](const std::unique_ptr<ScopedMemorySegment>& segment) {
return segment->IsResident();
}),
memory_segments_.end());
}
size_t DiscardableSharedMemoryHeap::GetSize() const {
return num_blocks_ * block_size_;
}
size_t DiscardableSharedMemoryHeap::GetFreelistSize() const {
return num_free_blocks_ * block_size_;
}
std::optional<size_t> DiscardableSharedMemoryHeap::GetResidentSize() const {
size_t resident_size = 0;
// Each member of |free_spans_| is a LinkedList of Spans. We need to iterate
// over each of these.
for (const base::LinkedList<Span>& span_list : free_spans_) {
for (base::LinkNode<Span>* curr = span_list.head(); curr != span_list.end();
curr = curr->next()) {
Span* free_span = curr->value();
base::span<uint8_t> mem = free_span->memory();
std::optional<size_t> resident_in_span =
base::trace_event::ProcessMemoryDump::CountResidentBytes(mem.data(),
mem.size());
if (!resident_in_span) {
return std::nullopt;
}
resident_size += resident_in_span.value();
}
}
return resident_size;
}
bool DiscardableSharedMemoryHeap::OnMemoryDump(
const base::trace_event::MemoryDumpArgs& args,
base::trace_event::ProcessMemoryDump* pmd) {
// Keep track of some metrics that are specific to the
// DiscardableSharedMemoryHeap, which aren't covered by the individual dumps
// for each segment below.
auto* total_dump = pmd->CreateAllocatorDump(base::StringPrintf(
"discardable/child_0x%" PRIXPTR, reinterpret_cast<uintptr_t>(this)));
const size_t freelist_size = GetFreelistSize();
total_dump->AddScalar("freelist_size",
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
freelist_size);
if (args.level_of_detail ==
base::trace_event::MemoryDumpLevelOfDetail::kBackground) {
// These metrics (size and virtual size) are also reported by each
// individual segment. If we report both, then the counts are artificially
// inflated in detailed dumps, depending on aggregation (for instance, in
// about:tracing's UI).
const size_t total_size = GetSize();
total_dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
total_size - freelist_size);
total_dump->AddScalar("virtual_size",
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
total_size);
auto resident_size = GetResidentSize();
if (resident_size) {
total_dump->AddScalar("resident_size",
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
resident_size.value());
}
} else {
// This iterates over all the memory allocated by the heap, and calls
// |OnMemoryDump| for each. It does not contain any information about the
// DiscardableSharedMemoryHeap itself.
std::ranges::for_each(
memory_segments_,
[pmd](const std::unique_ptr<ScopedMemorySegment>& segment) {
segment->OnMemoryDump(pmd);
});
}
return true;
}
void DiscardableSharedMemoryHeap::InsertIntoFreeList(
std::unique_ptr<DiscardableSharedMemoryHeap::Span> span) {
DCHECK(!IsInFreeList(span.get()));
size_t index = std::min(span->num_blocks_, std::size(free_spans_)) - 1;
free_spans_[index].Append(span.release());
}
std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::RemoveFromFreeList(Span* span) {
DCHECK(IsInFreeList(span));
span->RemoveFromList();
return base::WrapUnique(span);
}
std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Carve(Span* span, size_t blocks) {
std::unique_ptr<Span> serving = RemoveFromFreeList(span);
const size_t extra = serving->num_blocks_ - blocks;
if (extra) {
std::unique_ptr<Span> leftover(new Span(serving->shared_memory_.get(),
serving->first_block_ + blocks,
extra, serving->memory_segment_));
leftover->set_is_locked(false);
CHECK(extra == 1u || spans_.find(SpanBeginKey(*leftover)) == spans_.end());
RegisterSpan(leftover.get());
// No need to coalesce as the previous span of |leftover| was just split
// and the next span of |leftover| was not previously coalesced with
// |span|.
InsertIntoFreeList(std::move(leftover));
serving->num_blocks_ = blocks;
spans_[SpanEndKey(*serving)] = serving.get();
}
// |serving| is no longer in the free list, remove its length from
// |num_free_blocks_|.
CHECK_GE(num_free_blocks_, serving->num_blocks_);
num_free_blocks_ -= serving->num_blocks_;
return serving;
}
void DiscardableSharedMemoryHeap::RegisterSpan(Span* span) {
spans_[SpanBeginKey(*span)] = span;
if (span->num_blocks_ > 1u) {
spans_[SpanEndKey(*span)] = span;
}
}
void DiscardableSharedMemoryHeap::UnregisterSpan(Span* span) {
CHECK_EQ(spans_[SpanBeginKey(*span)], span);
spans_.erase(SpanBeginKey(*span));
if (span->num_blocks_ > 1u) {
CHECK_EQ(spans_[SpanEndKey(*span)], span);
spans_.erase(SpanEndKey(*span));
}
}
bool DiscardableSharedMemoryHeap::IsMemoryUsed(
const base::DiscardableSharedMemory* shared_memory,
size_t size) {
size_t blocks = size / block_size_;
Span* span = spans_[{shared_memory, 0u}];
CHECK_LE(span->num_blocks_, blocks);
// Memory is used if first span is not in free list or shorter than segment.
return !IsInFreeList(span) || span->num_blocks_ != blocks;
}
bool DiscardableSharedMemoryHeap::IsMemoryResident(
const base::DiscardableSharedMemory* shared_memory) {
return shared_memory->IsMemoryResident();
}
void DiscardableSharedMemoryHeap::ReleaseMemory(
const base::DiscardableSharedMemory* shared_memory,
size_t size) {
size_t offset = 0u;
size_t end = size / block_size_;
while (offset < end) {
Span* span = spans_[{shared_memory, offset}];
UnregisterSpan(span);
span->shared_memory_ = nullptr;
offset += span->num_blocks_;
CHECK_GE(num_blocks_, span->num_blocks_);
num_blocks_ -= span->num_blocks_;
// If |span| is in the free list, remove it and update |num_free_blocks_|.
if (IsInFreeList(span)) {
DCHECK_GE(num_free_blocks_, span->num_blocks_);
num_free_blocks_ -= span->num_blocks_;
RemoveFromFreeList(span);
}
}
}
void DiscardableSharedMemoryHeap::OnMemoryDump(
const base::DiscardableSharedMemory* shared_memory,
size_t size,
int32_t segment_id,
base::trace_event::ProcessMemoryDump* pmd) {
size_t allocated_objects_count = 0u;
size_t allocated_objects_size_in_blocks = 0u;
size_t locked_objects_size_in_blocks = 0u;
size_t offset = 0u;
size_t end = size / block_size_;
while (offset < end) {
Span* span = spans_[{shared_memory, offset}];
if (!IsInFreeList(span)) {
allocated_objects_size_in_blocks += span->num_blocks_;
locked_objects_size_in_blocks += span->is_locked_ ? span->num_blocks_ : 0;
allocated_objects_count++;
}
offset += span->num_blocks_;
}
size_t allocated_objects_size_in_bytes =
allocated_objects_size_in_blocks * block_size_;
size_t locked_objects_size_in_bytes =
locked_objects_size_in_blocks * block_size_;
std::string segment_dump_name =
base::StringPrintf("discardable/segment_%d", segment_id);
base::trace_event::MemoryAllocatorDump* segment_dump =
pmd->CreateAllocatorDump(segment_dump_name);
segment_dump->AddScalar("virtual_size",
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
size);
base::trace_event::MemoryAllocatorDump* obj_dump =
pmd->CreateAllocatorDump(segment_dump_name + "/allocated_objects");
obj_dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameObjectCount,
base::trace_event::MemoryAllocatorDump::kUnitsObjects,
allocated_objects_count);
obj_dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
allocated_objects_size_in_bytes);
obj_dump->AddScalar("locked_size",
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
locked_objects_size_in_bytes);
// The memory is owned by the client process (current).
shared_memory->CreateSharedMemoryOwnershipEdge(segment_dump, pmd,
/*is_owned=*/true);
}
base::trace_event::MemoryAllocatorDump*
DiscardableSharedMemoryHeap::CreateMemoryAllocatorDump(
Span* span,
const char* name,
base::trace_event::ProcessMemoryDump* pmd) const {
if (!span || !span->shared_memory()) {
base::trace_event::MemoryAllocatorDump* dump =
pmd->CreateAllocatorDump(name);
dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
base::trace_event::MemoryAllocatorDump::kUnitsBytes, 0u);
return dump;
}
auto it = std::ranges::find_if(
memory_segments_,
[span](const std::unique_ptr<ScopedMemorySegment>& segment) {
return segment->ContainsSpan(span);
});
CHECK(it != memory_segments_.end());
return (*it)->CreateMemoryAllocatorDump(span, block_size_, name, pmd);
}
// static
std::pair<const base::DiscardableSharedMemory*, size_t>
DiscardableSharedMemoryHeap::SpanBeginKey(const Span& span) {
return {span.shared_memory_.get(), span.first_block_};
}
// static
std::pair<const base::DiscardableSharedMemory*, size_t>
DiscardableSharedMemoryHeap::SpanEndKey(const Span& span) {
return {span.shared_memory_.get(), span.first_block_ + span.num_blocks_ - 1u};
}
} // namespace discardable_memory
|