File: discardable_shared_memory_heap.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (526 lines) | stat: -rw-r--r-- 19,086 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/discardable_memory/common/discardable_shared_memory_heap.h"

#include <inttypes.h>

#include <algorithm>
#include <bit>
#include <memory>
#include <string>
#include <utility>

#include "base/containers/contains.h"
#include "base/format_macros.h"
#include "base/memory/aligned_memory.h"
#include "base/memory/discardable_shared_memory.h"
#include "base/memory/page_size.h"
#include "base/memory/ptr_util.h"
#include "base/metrics/histogram_macros.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/memory_dump_manager.h"

namespace discardable_memory {

namespace {

bool IsInFreeList(DiscardableSharedMemoryHeap::Span* span) {
  return span->previous() || span->next();
}

}  // namespace

DiscardableSharedMemoryHeap::Span::Span(
    base::DiscardableSharedMemory* shared_memory,
    size_t first_block,
    size_t num_blocks,
    DiscardableSharedMemoryHeap::ScopedMemorySegment* memory_segment)
    : memory_segment_(memory_segment),
      shared_memory_(shared_memory),
      first_block_(first_block),
      num_blocks_(num_blocks) {}

DiscardableSharedMemoryHeap::ScopedMemorySegment::ScopedMemorySegment(
    DiscardableSharedMemoryHeap* heap,
    std::unique_ptr<base::DiscardableSharedMemory> shared_memory,
    size_t size,
    int32_t id,
    base::OnceClosure deleted_callback)
    : heap_(heap),
      shared_memory_(std::move(shared_memory)),
      size_(size),
      id_(id),
      deleted_callback_(std::move(deleted_callback)) {}

base::span<uint8_t> DiscardableSharedMemoryHeap::Span::memory() const {
  return shared_memory_->memory().subspan(first_block_ * base::GetPageSize(),
                                          num_blocks_ * base::GetPageSize());
}

DiscardableSharedMemoryHeap::ScopedMemorySegment*
DiscardableSharedMemoryHeap::Span::GetScopedMemorySegmentForTesting() const {
  return memory_segment_;
}

DiscardableSharedMemoryHeap::ScopedMemorySegment::~ScopedMemorySegment() {
  heap_->ReleaseMemory(shared_memory_.get(), size_);
  std::move(deleted_callback_).Run();
}

bool DiscardableSharedMemoryHeap::ScopedMemorySegment::IsUsed() const {
  return heap_->IsMemoryUsed(shared_memory_.get(), size_);
}

bool DiscardableSharedMemoryHeap::ScopedMemorySegment::IsResident() const {
  return heap_->IsMemoryResident(shared_memory_.get());
}

bool DiscardableSharedMemoryHeap::ScopedMemorySegment::ContainsSpan(
    Span* span) const {
  return shared_memory_.get() == span->shared_memory();
}

base::trace_event::MemoryAllocatorDump*
DiscardableSharedMemoryHeap::ScopedMemorySegment::CreateMemoryAllocatorDump(
    Span* span,
    size_t block_size,
    const char* name,
    base::trace_event::ProcessMemoryDump* pmd) const {
  DCHECK_EQ(shared_memory_.get(), span->shared_memory());
  base::trace_event::MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(name);
  dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
                  base::trace_event::MemoryAllocatorDump::kUnitsBytes,
                  static_cast<uint64_t>(span->num_blocks_ * block_size));

  pmd->AddSuballocation(
      dump->guid(),
      base::StringPrintf("discardable/segment_%d/allocated_objects", id_));
  return dump;
}

void DiscardableSharedMemoryHeap::ScopedMemorySegment::OnMemoryDump(
    base::trace_event::ProcessMemoryDump* pmd) const {
  heap_->OnMemoryDump(shared_memory_.get(), size_, id_, pmd);
}

DiscardableSharedMemoryHeap::DiscardableSharedMemoryHeap()
    : block_size_(base::GetPageSize()) {
  DCHECK_NE(block_size_, 0u);
  DCHECK(std::has_single_bit(block_size_));
}

DiscardableSharedMemoryHeap::~DiscardableSharedMemoryHeap() {
  memory_segments_.clear();
  DCHECK_EQ(num_blocks_, 0u);
  DCHECK_EQ(num_free_blocks_, 0u);
  DCHECK(!base::Contains(free_spans_, false, &base::LinkedList<Span>::empty));
}

std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Grow(
    std::unique_ptr<base::DiscardableSharedMemory> shared_memory,
    size_t size,
    int32_t id,
    base::OnceClosure deleted_callback) {
  // Memory must be aligned to block size.
  DCHECK(base::IsAligned(shared_memory->memory().data(), block_size_));
  DCHECK(base::IsAligned(size, block_size_));

  auto* raw_shared_memory = shared_memory.get();
  auto scoped_memory_segment = std::make_unique<ScopedMemorySegment>(
      this, std::move(shared_memory), size, id, std::move(deleted_callback));
  std::unique_ptr<Span> span(new Span(raw_shared_memory, 0u, size / block_size_,
                                      scoped_memory_segment.get()));
  CHECK(spans_.find(SpanBeginKey(*span)) == spans_.end());
  CHECK(spans_.find(SpanEndKey(*span)) == spans_.end());
  RegisterSpan(span.get());

  num_blocks_ += span->num_blocks_;

  // Start tracking if segment is resident by adding it to |memory_segments_|.
  memory_segments_.push_back(std::move(scoped_memory_segment));

  return span;
}

void DiscardableSharedMemoryHeap::MergeIntoFreeLists(
    std::unique_ptr<Span> span) {
  MergeIntoFreeListsClean(std::move(span));
}

void DiscardableSharedMemoryHeap::MergeIntoFreeListsClean(
    std::unique_ptr<Span> span) {
  DCHECK(span->shared_memory_);

  // First add length of |span| to |num_free_blocks_|.
  num_free_blocks_ += span->num_blocks_;

  // Merge with previous span if possible.
  auto begin_key = SpanBeginKey(*span);
  begin_key.second -= 1u;
  auto prev_it = spans_.find(begin_key);
  if (prev_it != spans_.end() && IsInFreeList(prev_it->second)) {
    std::unique_ptr<Span> prev = RemoveFromFreeList(prev_it->second);
    DCHECK_EQ(prev->first_block_ + prev->num_blocks_, span->first_block_);
    UnregisterSpan(prev.get());
    if (span->num_blocks_ > 1) {
      spans_.erase(SpanBeginKey(*span));
    }
    span->first_block_ -= prev->num_blocks_;
    span->num_blocks_ += prev->num_blocks_;
    spans_[SpanBeginKey(*span)] = span.get();
  }

  // Merge with next span if possible.
  auto end_key = SpanEndKey(*span);
  end_key.second += 1u;
  auto next_it = spans_.find(end_key);
  if (next_it != spans_.end() && IsInFreeList(next_it->second)) {
    std::unique_ptr<Span> next = RemoveFromFreeList(next_it->second);
    DCHECK_EQ(next->first_block_, span->first_block_ + span->num_blocks_);
    UnregisterSpan(next.get());
    if (span->num_blocks_ > 1) {
      spans_.erase(SpanEndKey(*span));
    }
    span->num_blocks_ += next->num_blocks_;
    spans_[SpanEndKey(*span)] = span.get();
  }

  InsertIntoFreeList(std::move(span));
}

std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Split(Span* span, size_t blocks) {
  DCHECK(blocks);
  CHECK_LT(blocks, span->num_blocks_);

  std::unique_ptr<Span> leftover(
      new Span(span->shared_memory_, span->first_block_ + blocks,
               span->num_blocks_ - blocks, span->memory_segment_));
  CHECK(leftover->num_blocks_ == 1u ||
        spans_.find(SpanBeginKey(*leftover)) == spans_.end());
  RegisterSpan(leftover.get());
  span->num_blocks_ = blocks;
  spans_[SpanEndKey(*span)] = span;
  return leftover;
}

std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::SearchFreeLists(size_t blocks, size_t slack) {
  CHECK(blocks);

  size_t length = blocks;
  size_t max_length = blocks + slack;

  // Search array of free lists for a suitable span.
  while (length < std::size(free_spans_)) {
    const base::LinkedList<Span>& free_spans = free_spans_[length - 1u];
    if (!free_spans.empty()) {
      // Return the most recently used span located in tail.
      return Carve(free_spans.tail()->value(), blocks);
    }

    // Return early after surpassing |max_length|.
    if (++length > max_length) {
      return nullptr;
    }
  }

  const base::LinkedList<Span>& overflow_free_spans =
      free_spans_[std::size(free_spans_) - 1u];

  // Search overflow free list for a suitable span. Starting with the most
  // recently used span located in tail and moving towards head.
  for (base::LinkNode<Span>* node = overflow_free_spans.tail();
       node != overflow_free_spans.end(); node = node->previous()) {
    Span* span = node->value();
    if (span->num_blocks_ >= blocks && span->num_blocks_ <= max_length) {
      return Carve(span, blocks);
    }
  }

  return nullptr;
}

void DiscardableSharedMemoryHeap::ReleaseFreeMemory() {
  // Erase all free segments after rearranging the segments in such a way
  // that used segments precede all free segments.
  memory_segments_.erase(
      std::partition(memory_segments_.begin(), memory_segments_.end(),
                     [](const std::unique_ptr<ScopedMemorySegment>& segment) {
                       return segment->IsUsed();
                     }),
      memory_segments_.end());
}

void DiscardableSharedMemoryHeap::ReleasePurgedMemory() {
  // Erase all purged segments after rearranging the segments in such a way
  // that resident segments precede all purged segments.
  memory_segments_.erase(
      std::partition(memory_segments_.begin(), memory_segments_.end(),
                     [](const std::unique_ptr<ScopedMemorySegment>& segment) {
                       return segment->IsResident();
                     }),
      memory_segments_.end());
}

size_t DiscardableSharedMemoryHeap::GetSize() const {
  return num_blocks_ * block_size_;
}

size_t DiscardableSharedMemoryHeap::GetFreelistSize() const {
  return num_free_blocks_ * block_size_;
}

std::optional<size_t> DiscardableSharedMemoryHeap::GetResidentSize() const {
  size_t resident_size = 0;
  // Each member of |free_spans_| is a LinkedList of Spans. We need to iterate
  // over each of these.
  for (const base::LinkedList<Span>& span_list : free_spans_) {
    for (base::LinkNode<Span>* curr = span_list.head(); curr != span_list.end();
         curr = curr->next()) {
      Span* free_span = curr->value();
      base::span<uint8_t> mem = free_span->memory();
      std::optional<size_t> resident_in_span =
          base::trace_event::ProcessMemoryDump::CountResidentBytes(mem.data(),
                                                                   mem.size());
      if (!resident_in_span) {
        return std::nullopt;
      }
      resident_size += resident_in_span.value();
    }
  }
  return resident_size;
}

bool DiscardableSharedMemoryHeap::OnMemoryDump(
    const base::trace_event::MemoryDumpArgs& args,
    base::trace_event::ProcessMemoryDump* pmd) {
  // Keep track of some metrics that are specific to the
  // DiscardableSharedMemoryHeap, which aren't covered by the individual dumps
  // for each segment below.
  auto* total_dump = pmd->CreateAllocatorDump(base::StringPrintf(
      "discardable/child_0x%" PRIXPTR, reinterpret_cast<uintptr_t>(this)));
  const size_t freelist_size = GetFreelistSize();
  total_dump->AddScalar("freelist_size",
                        base::trace_event::MemoryAllocatorDump::kUnitsBytes,
                        freelist_size);
  if (args.level_of_detail ==
      base::trace_event::MemoryDumpLevelOfDetail::kBackground) {
    // These metrics (size and virtual size) are also reported by each
    // individual segment. If we report both, then the counts are artificially
    // inflated in detailed dumps, depending on aggregation (for instance, in
    // about:tracing's UI).
    const size_t total_size = GetSize();
    total_dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
                          base::trace_event::MemoryAllocatorDump::kUnitsBytes,
                          total_size - freelist_size);
    total_dump->AddScalar("virtual_size",
                          base::trace_event::MemoryAllocatorDump::kUnitsBytes,
                          total_size);
    auto resident_size = GetResidentSize();
    if (resident_size) {
      total_dump->AddScalar("resident_size",
                            base::trace_event::MemoryAllocatorDump::kUnitsBytes,
                            resident_size.value());
    }
  } else {
    // This iterates over all the memory allocated by the heap, and calls
    // |OnMemoryDump| for each. It does not contain any information about the
    // DiscardableSharedMemoryHeap itself.
    std::ranges::for_each(
        memory_segments_,
        [pmd](const std::unique_ptr<ScopedMemorySegment>& segment) {
          segment->OnMemoryDump(pmd);
        });
  }

  return true;
}

void DiscardableSharedMemoryHeap::InsertIntoFreeList(
    std::unique_ptr<DiscardableSharedMemoryHeap::Span> span) {
  DCHECK(!IsInFreeList(span.get()));
  size_t index = std::min(span->num_blocks_, std::size(free_spans_)) - 1;

  free_spans_[index].Append(span.release());
}

std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::RemoveFromFreeList(Span* span) {
  DCHECK(IsInFreeList(span));
  span->RemoveFromList();
  return base::WrapUnique(span);
}

std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Carve(Span* span, size_t blocks) {
  std::unique_ptr<Span> serving = RemoveFromFreeList(span);

  const size_t extra = serving->num_blocks_ - blocks;
  if (extra) {
    std::unique_ptr<Span> leftover(new Span(serving->shared_memory_.get(),
                                            serving->first_block_ + blocks,
                                            extra, serving->memory_segment_));
    leftover->set_is_locked(false);
    CHECK(extra == 1u || spans_.find(SpanBeginKey(*leftover)) == spans_.end());
    RegisterSpan(leftover.get());

    // No need to coalesce as the previous span of |leftover| was just split
    // and the next span of |leftover| was not previously coalesced with
    // |span|.
    InsertIntoFreeList(std::move(leftover));

    serving->num_blocks_ = blocks;
    spans_[SpanEndKey(*serving)] = serving.get();
  }

  // |serving| is no longer in the free list, remove its length from
  // |num_free_blocks_|.
  CHECK_GE(num_free_blocks_, serving->num_blocks_);
  num_free_blocks_ -= serving->num_blocks_;

  return serving;
}

void DiscardableSharedMemoryHeap::RegisterSpan(Span* span) {
  spans_[SpanBeginKey(*span)] = span;
  if (span->num_blocks_ > 1u) {
    spans_[SpanEndKey(*span)] = span;
  }
}

void DiscardableSharedMemoryHeap::UnregisterSpan(Span* span) {
  CHECK_EQ(spans_[SpanBeginKey(*span)], span);
  spans_.erase(SpanBeginKey(*span));
  if (span->num_blocks_ > 1u) {
    CHECK_EQ(spans_[SpanEndKey(*span)], span);
    spans_.erase(SpanEndKey(*span));
  }
}

bool DiscardableSharedMemoryHeap::IsMemoryUsed(
    const base::DiscardableSharedMemory* shared_memory,
    size_t size) {
  size_t blocks = size / block_size_;
  Span* span = spans_[{shared_memory, 0u}];
  CHECK_LE(span->num_blocks_, blocks);
  // Memory is used if first span is not in free list or shorter than segment.
  return !IsInFreeList(span) || span->num_blocks_ != blocks;
}

bool DiscardableSharedMemoryHeap::IsMemoryResident(
    const base::DiscardableSharedMemory* shared_memory) {
  return shared_memory->IsMemoryResident();
}

void DiscardableSharedMemoryHeap::ReleaseMemory(
    const base::DiscardableSharedMemory* shared_memory,
    size_t size) {
  size_t offset = 0u;
  size_t end = size / block_size_;
  while (offset < end) {
    Span* span = spans_[{shared_memory, offset}];
    UnregisterSpan(span);
    span->shared_memory_ = nullptr;

    offset += span->num_blocks_;

    CHECK_GE(num_blocks_, span->num_blocks_);
    num_blocks_ -= span->num_blocks_;

    // If |span| is in the free list, remove it and update |num_free_blocks_|.
    if (IsInFreeList(span)) {
      DCHECK_GE(num_free_blocks_, span->num_blocks_);
      num_free_blocks_ -= span->num_blocks_;
      RemoveFromFreeList(span);
    }
  }
}

void DiscardableSharedMemoryHeap::OnMemoryDump(
    const base::DiscardableSharedMemory* shared_memory,
    size_t size,
    int32_t segment_id,
    base::trace_event::ProcessMemoryDump* pmd) {
  size_t allocated_objects_count = 0u;
  size_t allocated_objects_size_in_blocks = 0u;
  size_t locked_objects_size_in_blocks = 0u;
  size_t offset = 0u;
  size_t end = size / block_size_;
  while (offset < end) {
    Span* span = spans_[{shared_memory, offset}];
    if (!IsInFreeList(span)) {
      allocated_objects_size_in_blocks += span->num_blocks_;
      locked_objects_size_in_blocks += span->is_locked_ ? span->num_blocks_ : 0;
      allocated_objects_count++;
    }
    offset += span->num_blocks_;
  }
  size_t allocated_objects_size_in_bytes =
      allocated_objects_size_in_blocks * block_size_;
  size_t locked_objects_size_in_bytes =
      locked_objects_size_in_blocks * block_size_;

  std::string segment_dump_name =
      base::StringPrintf("discardable/segment_%d", segment_id);
  base::trace_event::MemoryAllocatorDump* segment_dump =
      pmd->CreateAllocatorDump(segment_dump_name);
  segment_dump->AddScalar("virtual_size",
                          base::trace_event::MemoryAllocatorDump::kUnitsBytes,
                          size);

  base::trace_event::MemoryAllocatorDump* obj_dump =
      pmd->CreateAllocatorDump(segment_dump_name + "/allocated_objects");
  obj_dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameObjectCount,
                      base::trace_event::MemoryAllocatorDump::kUnitsObjects,
                      allocated_objects_count);
  obj_dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
                      base::trace_event::MemoryAllocatorDump::kUnitsBytes,
                      allocated_objects_size_in_bytes);
  obj_dump->AddScalar("locked_size",
                      base::trace_event::MemoryAllocatorDump::kUnitsBytes,
                      locked_objects_size_in_bytes);

  // The memory is owned by the client process (current).
  shared_memory->CreateSharedMemoryOwnershipEdge(segment_dump, pmd,
                                                 /*is_owned=*/true);
}

base::trace_event::MemoryAllocatorDump*
DiscardableSharedMemoryHeap::CreateMemoryAllocatorDump(
    Span* span,
    const char* name,
    base::trace_event::ProcessMemoryDump* pmd) const {
  if (!span || !span->shared_memory()) {
    base::trace_event::MemoryAllocatorDump* dump =
        pmd->CreateAllocatorDump(name);
    dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
                    base::trace_event::MemoryAllocatorDump::kUnitsBytes, 0u);
    return dump;
  }

  auto it = std::ranges::find_if(
      memory_segments_,
      [span](const std::unique_ptr<ScopedMemorySegment>& segment) {
        return segment->ContainsSpan(span);
      });
  CHECK(it != memory_segments_.end());
  return (*it)->CreateMemoryAllocatorDump(span, block_size_, name, pmd);
}

// static
std::pair<const base::DiscardableSharedMemory*, size_t>
DiscardableSharedMemoryHeap::SpanBeginKey(const Span& span) {
  return {span.shared_memory_.get(), span.first_block_};
}

// static
std::pair<const base::DiscardableSharedMemory*, size_t>
DiscardableSharedMemoryHeap::SpanEndKey(const Span& span) {
  return {span.shared_memory_.get(), span.first_block_ + span.num_blocks_ - 1u};
}

}  // namespace discardable_memory