1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/gcm_driver/crypto/gcm_encryption_provider.h"
#include <memory>
#include "base/base64.h"
#include "base/containers/span.h"
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/numerics/byte_conversions.h"
#include "base/strings/strcat.h"
#include "base/task/sequenced_task_runner.h"
#include "components/gcm_driver/common/gcm_message.h"
#include "components/gcm_driver/crypto/encryption_header_parsers.h"
#include "components/gcm_driver/crypto/gcm_decryption_result.h"
#include "components/gcm_driver/crypto/gcm_encryption_result.h"
#include "components/gcm_driver/crypto/gcm_key_store.h"
#include "components/gcm_driver/crypto/gcm_message_cryptographer.h"
#include "components/gcm_driver/crypto/message_payload_parser.h"
#include "components/gcm_driver/crypto/p256_key_util.h"
#include "components/gcm_driver/crypto/proto/gcm_encryption_data.pb.h"
#include "crypto/ec_private_key.h"
#include "crypto/random.h"
namespace gcm {
namespace {
const char kEncryptionProperty[] = "encryption";
const char kCryptoKeyProperty[] = "crypto-key";
const char kInternalRawData[] = "_googRawData";
// Directory in the GCM Store in which the encryption database will be stored.
const base::FilePath::CharType kEncryptionDirectoryName[] =
FILE_PATH_LITERAL("Encryption");
IncomingMessage CreateMessageWithId(const std::string& message_id) {
IncomingMessage message;
message.message_id = message_id;
return message;
}
} // namespace
GCMEncryptionProvider::GCMEncryptionProvider() = default;
GCMEncryptionProvider::~GCMEncryptionProvider() = default;
// static
const char GCMEncryptionProvider::kContentEncodingProperty[] =
"content-encoding";
// static
const char GCMEncryptionProvider::kContentCodingAes128Gcm[] = "aes128gcm";
void GCMEncryptionProvider::Init(
const base::FilePath& store_path,
const scoped_refptr<base::SequencedTaskRunner>& blocking_task_runner) {
DCHECK(!key_store_);
base::FilePath encryption_store_path = store_path;
// |store_path| can be empty in tests, which means that the database should
// be created in memory rather than on-disk.
if (!store_path.empty())
encryption_store_path = store_path.Append(kEncryptionDirectoryName);
key_store_ = std::make_unique<GCMKeyStore>(encryption_store_path,
blocking_task_runner);
}
void GCMEncryptionProvider::GetEncryptionInfo(
const std::string& app_id,
const std::string& authorized_entity,
EncryptionInfoCallback callback) {
DCHECK(key_store_);
key_store_->GetKeys(
app_id, authorized_entity,
false /* fallback_to_empty_authorized_entity */,
base::BindOnce(&GCMEncryptionProvider::DidGetEncryptionInfo,
weak_ptr_factory_.GetWeakPtr(), app_id, authorized_entity,
std::move(callback)));
}
void GCMEncryptionProvider::DidGetEncryptionInfo(
const std::string& app_id,
const std::string& authorized_entity,
EncryptionInfoCallback callback,
std::unique_ptr<crypto::ECPrivateKey> key,
const std::string& auth_secret) {
if (!key) {
key_store_->CreateKeys(
app_id, authorized_entity,
base::BindOnce(&GCMEncryptionProvider::DidCreateEncryptionInfo,
weak_ptr_factory_.GetWeakPtr(), std::move(callback)));
return;
}
std::string public_key;
const bool success = GetRawPublicKey(*key, &public_key);
DCHECK(success);
std::move(callback).Run(public_key, auth_secret);
}
void GCMEncryptionProvider::RemoveEncryptionInfo(
const std::string& app_id,
const std::string& authorized_entity,
base::OnceClosure callback) {
DCHECK(key_store_);
key_store_->RemoveKeys(app_id, authorized_entity, std::move(callback));
}
bool GCMEncryptionProvider::IsEncryptedMessage(
const IncomingMessage& message) const {
// Messages that explicitly specify their content coding to be "aes128gcm"
// indicate that they use draft-ietf-webpush-encryption-08.
auto content_encoding_iter = message.data.find(kContentEncodingProperty);
if (content_encoding_iter != message.data.end() &&
content_encoding_iter->second == kContentCodingAes128Gcm) {
return true;
}
// The Web Push protocol requires the encryption and crypto-key properties to
// be set, and the raw_data field to be populated with the payload.
if (message.data.find(kEncryptionProperty) == message.data.end() ||
message.data.find(kCryptoKeyProperty) == message.data.end())
return false;
return message.raw_data.size() > 0;
}
void GCMEncryptionProvider::DecryptMessage(const std::string& app_id,
const IncomingMessage& message,
DecryptMessageCallback callback) {
DCHECK(key_store_);
if (!IsEncryptedMessage(message)) {
std::move(callback).Run(GCMDecryptionResult::UNENCRYPTED, message);
return;
}
std::string salt, public_key, ciphertext;
GCMMessageCryptographer::Version version;
uint32_t record_size;
auto content_encoding_iter = message.data.find(kContentEncodingProperty);
if (content_encoding_iter != message.data.end() &&
content_encoding_iter->second == kContentCodingAes128Gcm) {
// The message follows encryption per draft-ietf-webpush-encryption-08. Use
// the binary header of the message to derive the values.
auto parser = std::make_unique<MessagePayloadParser>(message.raw_data);
if (!parser->IsValid()) {
// Attempt to parse base64 encoded internal raw data.
auto raw_data_iter = message.data.find(kInternalRawData);
std::string raw_data;
if (raw_data_iter == message.data.end() ||
!base::Base64Decode(raw_data_iter->second, &raw_data) ||
!(parser = std::make_unique<MessagePayloadParser>(raw_data))
->IsValid()) {
DLOG(ERROR) << "Unable to parse the message's binary header";
std::move(callback).Run(parser->GetFailureReason(),
CreateMessageWithId(message.message_id));
return;
}
}
salt = parser->salt();
public_key = parser->public_key();
record_size = parser->record_size();
ciphertext = parser->ciphertext();
version = GCMMessageCryptographer::Version::DRAFT_08;
} else {
// The message follows encryption per draft-ietf-webpush-encryption-03. Use
// the Encryption and Crypto-Key header values to derive the values.
const auto& encryption_header = message.data.find(kEncryptionProperty);
CHECK(encryption_header != message.data.end());
const auto& crypto_key_header = message.data.find(kCryptoKeyProperty);
CHECK(crypto_key_header != message.data.end());
EncryptionHeaderIterator encryption_header_iterator(
encryption_header->second.begin(), encryption_header->second.end());
if (!encryption_header_iterator.GetNext()) {
DLOG(ERROR) << "Unable to parse the value of the Encryption header";
std::move(callback).Run(GCMDecryptionResult::INVALID_ENCRYPTION_HEADER,
CreateMessageWithId(message.message_id));
return;
}
if (encryption_header_iterator.salt().size() !=
GCMMessageCryptographer::kSaltSize) {
DLOG(ERROR) << "Invalid values supplied in the Encryption header";
std::move(callback).Run(GCMDecryptionResult::INVALID_ENCRYPTION_HEADER,
CreateMessageWithId(message.message_id));
return;
}
salt = encryption_header_iterator.salt();
record_size = encryption_header_iterator.rs();
CryptoKeyHeaderIterator crypto_key_header_iterator(
crypto_key_header->second.begin(), crypto_key_header->second.end());
if (!crypto_key_header_iterator.GetNext()) {
DLOG(ERROR) << "Unable to parse the value of the Crypto-Key header";
std::move(callback).Run(GCMDecryptionResult::INVALID_CRYPTO_KEY_HEADER,
CreateMessageWithId(message.message_id));
return;
}
// Ignore values that don't include the "dh" property. When using VAPID, it
// is valid for the application server to supply multiple values.
while (crypto_key_header_iterator.dh().empty() &&
crypto_key_header_iterator.GetNext()) {
}
bool valid_crypto_key_header = false;
if (!crypto_key_header_iterator.dh().empty()) {
public_key = crypto_key_header_iterator.dh();
valid_crypto_key_header = true;
// Guard against the "dh" property being included more than once.
while (crypto_key_header_iterator.GetNext()) {
if (crypto_key_header_iterator.dh().empty())
continue;
valid_crypto_key_header = false;
break;
}
}
if (!valid_crypto_key_header) {
DLOG(ERROR) << "Invalid values supplied in the Crypto-Key header";
std::move(callback).Run(GCMDecryptionResult::INVALID_CRYPTO_KEY_HEADER,
CreateMessageWithId(message.message_id));
return;
}
ciphertext = message.raw_data;
version = GCMMessageCryptographer::Version::DRAFT_03;
}
// Use |fallback_to_empty_authorized_entity|, since this message might have
// been sent to either an InstanceID token or a non-InstanceID registration.
key_store_->GetKeys(
app_id, message.sender_id /* authorized_entity */,
true /* fallback_to_empty_authorized_entity */,
base::BindOnce(&GCMEncryptionProvider::DecryptMessageWithKey,
weak_ptr_factory_.GetWeakPtr(), message.message_id,
message.collapse_key, message.sender_id, std::move(salt),
std::move(public_key), record_size, std::move(ciphertext),
version, std::move(callback)));
} // namespace gcm
void GCMEncryptionProvider::EncryptMessage(const std::string& app_id,
const std::string& authorized_entity,
const std::string& p256dh,
const std::string& auth_secret,
const std::string& message,
EncryptMessageCallback callback) {
DCHECK(key_store_);
key_store_->GetKeys(
app_id, authorized_entity,
false /* fallback_to_empty_authorized_entity */,
base::BindOnce(&GCMEncryptionProvider::EncryptMessageWithKey,
weak_ptr_factory_.GetWeakPtr(), app_id, authorized_entity,
p256dh, auth_secret, message, std::move(callback)));
}
void GCMEncryptionProvider::DidCreateEncryptionInfo(
EncryptionInfoCallback callback,
std::unique_ptr<crypto::ECPrivateKey> key,
const std::string& auth_secret) {
if (!key) {
std::move(callback).Run(std::string() /* p256dh */,
std::string() /* auth_secret */);
return;
}
std::string public_key;
const bool success = GetRawPublicKey(*key, &public_key);
DCHECK(success);
std::move(callback).Run(public_key, auth_secret);
}
void GCMEncryptionProvider::DecryptMessageWithKey(
const std::string& message_id,
const std::string& collapse_key,
const std::string& sender_id,
const std::string& salt,
const std::string& public_key,
uint32_t record_size,
const std::string& ciphertext,
GCMMessageCryptographer::Version version,
DecryptMessageCallback callback,
std::unique_ptr<crypto::ECPrivateKey> key,
const std::string& auth_secret) {
if (!key) {
DLOG(ERROR) << "Unable to retrieve the keys for the incoming message.";
std::move(callback).Run(GCMDecryptionResult::NO_KEYS,
CreateMessageWithId(message_id));
return;
}
std::string shared_secret;
if (!ComputeSharedP256Secret(*key, public_key, &shared_secret)) {
DLOG(ERROR) << "Unable to calculate the shared secret.";
std::move(callback).Run(GCMDecryptionResult::INVALID_SHARED_SECRET,
CreateMessageWithId(message_id));
return;
}
std::string plaintext;
GCMMessageCryptographer cryptographer(version);
std::string exported_public_key;
const bool success = GetRawPublicKey(*key, &exported_public_key);
DCHECK(success);
if (!cryptographer.Decrypt(exported_public_key, public_key, shared_secret,
auth_secret, salt, ciphertext, record_size,
&plaintext)) {
DLOG(ERROR) << "Unable to decrypt the incoming data.";
std::move(callback).Run(GCMDecryptionResult::INVALID_PAYLOAD,
CreateMessageWithId(message_id));
return;
}
IncomingMessage decrypted_message;
decrypted_message.message_id = message_id;
decrypted_message.collapse_key = collapse_key;
decrypted_message.sender_id = sender_id;
decrypted_message.raw_data.swap(plaintext);
decrypted_message.decrypted = true;
// There must be no data associated with the decrypted message at this point,
// to make sure that we don't end up in an infinite decryption loop.
DCHECK_EQ(0u, decrypted_message.data.size());
std::move(callback).Run(version == GCMMessageCryptographer::Version::DRAFT_03
? GCMDecryptionResult::DECRYPTED_DRAFT_03
: GCMDecryptionResult::DECRYPTED_DRAFT_08,
std::move(decrypted_message));
}
void GCMEncryptionProvider::EncryptMessageWithKey(
const std::string& app_id,
const std::string& authorized_entity,
const std::string& p256dh,
const std::string& auth_secret,
const std::string& message,
EncryptMessageCallback callback,
std::unique_ptr<crypto::ECPrivateKey> key,
const std::string& sender_auth_secret) {
if (!key) {
DLOG(ERROR) << "Unable to retrieve the keys for the outgoing message.";
std::move(callback).Run(GCMEncryptionResult::NO_KEYS, std::string());
return;
}
// Creates a cryptographically secure salt of |salt_size| octets in size,
// and calculate the shared secret for the message.
std::string salt(16, '\0');
crypto::RandBytes(base::as_writable_byte_span(salt));
std::string shared_secret;
if (!ComputeSharedP256Secret(*key, p256dh, &shared_secret)) {
DLOG(ERROR) << "Unable to calculate the shared secret.";
std::move(callback).Run(GCMEncryptionResult::INVALID_SHARED_SECRET,
std::string());
return;
}
size_t record_size;
std::string ciphertext;
GCMMessageCryptographer cryptographer(
GCMMessageCryptographer::Version::DRAFT_08);
std::string sender_public_key;
bool success = GetRawPublicKey(*key, &sender_public_key);
DCHECK(success);
if (!cryptographer.Encrypt(p256dh, sender_public_key, shared_secret,
auth_secret, salt, message, &record_size,
&ciphertext)) {
DLOG(ERROR) << "Unable to encrypt the incoming data.";
std::move(callback).Run(GCMEncryptionResult::ENCRYPTION_FAILED,
std::string());
return;
}
// Construct encryption header.
uint32_t rs = record_size;
std::string rs_str(sizeof(rs), 0u);
base::as_writable_byte_span(rs_str).copy_from(base::U32ToBigEndian(rs));
uint8_t key_length = sender_public_key.size();
std::string key_length_str(sizeof(key_length), 0u);
base::as_writable_byte_span(key_length_str)
.copy_from(base::U8ToBigEndian(key_length));
std::string payload = base::StrCat(
{salt, rs_str, key_length_str, sender_public_key, ciphertext});
std::move(callback).Run(GCMEncryptionResult::ENCRYPTED_DRAFT_08,
std::move(payload));
}
} // namespace gcm
|