1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/gcm_driver/crypto/gcm_encryption_provider.h"
#include <stddef.h>
#include <memory>
#include <sstream>
#include <string>
#include "base/base64.h"
#include "base/base64url.h"
#include "base/big_endian.h"
#include "base/containers/span.h"
#include "base/files/scoped_temp_dir.h"
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/run_loop.h"
#include "base/strings/string_number_conversions.h"
#include "base/task/single_thread_task_runner.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/task_environment.h"
#include "components/gcm_driver/common/gcm_message.h"
#include "components/gcm_driver/crypto/gcm_decryption_result.h"
#include "components/gcm_driver/crypto/gcm_encryption_result.h"
#include "components/gcm_driver/crypto/gcm_key_store.h"
#include "components/gcm_driver/crypto/gcm_message_cryptographer.h"
#include "components/gcm_driver/crypto/p256_key_util.h"
#include "crypto/random.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace gcm {
namespace {
const char kExampleAppId[] = "my-app-id";
const char kExampleAuthorizedEntity[] = "my-sender-id";
const char kExampleMessage[] = "Hello, world, this is the GCM Driver!";
const char kValidEncryptionHeader[] =
"keyid=foo;salt=MTIzNDU2Nzg5MDEyMzQ1Ng;rs=1024";
const char kInvalidEncryptionHeader[] = "keyid";
const char kValidCryptoKeyHeader[] =
"keyid=foo;dh=BL_UGhfudEkXMUd4U4-D4nP5KHxKjQHsW6j88ybbehXM7fqi1OMFefDUEi0eJ"
"vsKfyVBWYkQjH-lSPJKxjAyslg";
const char kValidThreeValueCryptoKeyHeader[] =
"keyid=foo,keyid=bar,keyid=baz;dh=BL_UGhfudEkXMUd4U4-D4nP5KHxKjQHsW6j88ybbe"
"hXM7fqi1OMFefDUEi0eJvsKfyVBWYkQjH-lSPJKxjAyslg";
const char kInvalidCryptoKeyHeader[] = "keyid";
const char kInvalidThreeValueCryptoKeyHeader[] =
"keyid=foo,dh=BL_UGhfudEkXMUd4U4-D4nP5KHxKjQHsW6j88ybbehXM7fqi1OMFefDUEi0eJ"
"vsKfyVBWYkQjH-lSPJKxjAyslg,keyid=baz,dh=BL_UGhfudEkXMUd4U4-D4nP5KHxKjQHsW6"
"j88ybbehXM7fqi1OMFefDUEi0eJvsKfyVBWYkQjH-lSPJKxjAyslg";
} // namespace
using ECPrivateKeyUniquePtr = std::unique_ptr<crypto::ECPrivateKey>;
class GCMEncryptionProviderTest : public ::testing::Test {
public:
void SetUp() override {
ASSERT_TRUE(scoped_temp_dir_.CreateUniqueTempDir());
encryption_provider_ = std::make_unique<GCMEncryptionProvider>();
encryption_provider_->Init(
scoped_temp_dir_.GetPath(),
base::SingleThreadTaskRunner::GetCurrentDefault());
}
void TearDown() override {
encryption_provider_.reset();
// |encryption_provider_| owns a ProtoDatabase whose destructor deletes
// the underlying LevelDB database on the task runner.
base::RunLoop().RunUntilIdle();
}
// To be used as a callback for GCMEncryptionProvider::GetEncryptionInfo().
void DidGetEncryptionInfo(std::string* p256dh_out,
std::string* auth_secret_out,
std::string p256dh,
std::string auth_secret) {
*p256dh_out = std::move(p256dh);
*auth_secret_out = std::move(auth_secret);
}
// To be used as a callback for GCMKeyStore::{GetKeys,CreateKeys}.
void HandleKeysCallback(ECPrivateKeyUniquePtr* key_out,
std::string* auth_secret_out,
ECPrivateKeyUniquePtr key,
const std::string& auth_secret) {
*key_out = std::move(key);
*auth_secret_out = auth_secret;
}
protected:
// Decrypts the |message| and then synchronously waits until either the
// success or failure callbacks has been invoked.
void Decrypt(const IncomingMessage& message) {
encryption_provider_->DecryptMessage(
kExampleAppId, message,
base::BindOnce(&GCMEncryptionProviderTest::DidDecryptMessage,
base::Unretained(this)));
// The encryption keys will be read asynchronously.
base::RunLoop().RunUntilIdle();
}
// Encrypts the |message| and then synchronously waits until either the
// success or failure callbacks has been invoked.
void Encrypt(const std::string& authorized_entity,
const std::string& p256dh,
const std::string& auth_secret,
const std::string& message) {
encryption_provider_->EncryptMessage(
kExampleAppId, authorized_entity, p256dh, auth_secret, message,
base::BindOnce(&GCMEncryptionProviderTest::DidEncryptMessage,
base::Unretained(this)));
// The encryption keys will be read asynchronously.
base::RunLoop().RunUntilIdle();
}
// Checks that the underlying key store has a key for the |kExampleAppId| +
// authorized entity key if and only if |should_have_key| is true. Must wrap
// with ASSERT/EXPECT_NO_FATAL_FAILURE.
void CheckHasKey(const std::string& authorized_entity, bool should_have_key) {
ECPrivateKeyUniquePtr key;
std::string auth_secret;
encryption_provider()->key_store_->GetKeys(
kExampleAppId, authorized_entity,
false /* fallback_to_empty_authorized_entity */,
base::BindOnce(&GCMEncryptionProviderTest::HandleKeysCallback,
base::Unretained(this), &key, &auth_secret));
base::RunLoop().RunUntilIdle();
if (should_have_key) {
ASSERT_TRUE(key);
std::string private_key, public_key;
ASSERT_TRUE(GetRawPrivateKey(*key, &private_key));
ASSERT_TRUE(GetRawPublicKey(*key, &public_key));
ASSERT_GT(public_key.size(), 0u);
ASSERT_GT(private_key.size(), 0u);
ASSERT_GT(auth_secret.size(), 0u);
} else {
ASSERT_FALSE(key);
ASSERT_EQ(0u, auth_secret.size());
}
}
// Returns the result of the previous decryption operation.
GCMDecryptionResult decryption_result() { return decryption_result_; }
// Returns the result of the previous encryption operation.
GCMEncryptionResult encryption_result() { return encryption_result_; }
// Returns the message resulting from the previous decryption operation.
const IncomingMessage& decrypted_message() { return decrypted_message_; }
// Returns the message resulting from the previous encryption operation.
const std::string& encrypted_message() { return encrypted_message_; }
GCMEncryptionProvider* encryption_provider() {
return encryption_provider_.get();
}
// Performs a full round-trip test of the encryption feature. Must wrap this
// in ASSERT_NO_FATAL_FAILURE.
void TestEncryptionRoundTrip(const std::string& app_id,
const std::string& authorized_entity,
GCMMessageCryptographer::Version version,
bool use_internal_raw_data_for_draft08 = false);
// Performs a test encryption feature without creating proper keys. Must wrap
// this in ASSERT_NO_FATAL_FAILURE.
void TestEncryptionNoKeys(const std::string& app_id,
const std::string& authorized_entity);
private:
void DidDecryptMessage(GCMDecryptionResult result, IncomingMessage message) {
decryption_result_ = result;
decrypted_message_ = std::move(message);
}
void DidEncryptMessage(GCMEncryptionResult result, std::string message) {
encryption_result_ = result;
encrypted_message_ = std::move(message);
}
base::test::SingleThreadTaskEnvironment task_environment_;
base::ScopedTempDir scoped_temp_dir_;
base::HistogramTester histogram_tester_;
std::unique_ptr<GCMEncryptionProvider> encryption_provider_;
GCMDecryptionResult decryption_result_ = GCMDecryptionResult::UNENCRYPTED;
GCMEncryptionResult encryption_result_ =
GCMEncryptionResult::ENCRYPTION_FAILED;
IncomingMessage decrypted_message_;
std::string encrypted_message_;
};
TEST_F(GCMEncryptionProviderTest, IsEncryptedMessage) {
// Both the Encryption and Encryption-Key headers must be present, and the raw
// data must be non-empty for a message to be considered encrypted.
IncomingMessage empty_message;
EXPECT_FALSE(encryption_provider()->IsEncryptedMessage(empty_message));
IncomingMessage single_header_message;
single_header_message.data["encryption"] = "";
EXPECT_FALSE(
encryption_provider()->IsEncryptedMessage(single_header_message));
IncomingMessage double_header_message;
double_header_message.data["encryption"] = "";
double_header_message.data["crypto-key"] = "";
EXPECT_FALSE(
encryption_provider()->IsEncryptedMessage(double_header_message));
IncomingMessage double_header_with_data_message;
double_header_with_data_message.data["encryption"] = "";
double_header_with_data_message.data["crypto-key"] = "";
double_header_with_data_message.raw_data = "foo";
EXPECT_TRUE(encryption_provider()->IsEncryptedMessage(
double_header_with_data_message));
IncomingMessage draft08_message;
draft08_message.data["content-encoding"] = "aes128gcm";
draft08_message.raw_data = "foo";
EXPECT_TRUE(encryption_provider()->IsEncryptedMessage(draft08_message));
}
TEST_F(GCMEncryptionProviderTest, VerifiesEncryptionHeaderParsing) {
// The Encryption header must be parsable and contain valid values.
// Note that this is more extensively tested in EncryptionHeaderParsersTest.
IncomingMessage invalid_message;
invalid_message.data["encryption"] = kInvalidEncryptionHeader;
invalid_message.data["crypto-key"] = kValidCryptoKeyHeader;
invalid_message.raw_data = "foo";
ASSERT_NO_FATAL_FAILURE(Decrypt(invalid_message));
EXPECT_EQ(GCMDecryptionResult::INVALID_ENCRYPTION_HEADER,
decryption_result());
IncomingMessage valid_message;
valid_message.data["encryption"] = kValidEncryptionHeader;
valid_message.data["crypto-key"] = kInvalidCryptoKeyHeader;
valid_message.raw_data = "foo";
ASSERT_NO_FATAL_FAILURE(Decrypt(valid_message));
EXPECT_NE(GCMDecryptionResult::INVALID_ENCRYPTION_HEADER,
decryption_result());
}
TEST_F(GCMEncryptionProviderTest, VerifiesCryptoKeyHeaderParsing) {
// The Crypto-Key header must be parsable and contain valid values.
// Note that this is more extensively tested in EncryptionHeaderParsersTest.
IncomingMessage invalid_message;
invalid_message.data["encryption"] = kValidEncryptionHeader;
invalid_message.data["crypto-key"] = kInvalidCryptoKeyHeader;
invalid_message.raw_data = "foo";
ASSERT_NO_FATAL_FAILURE(Decrypt(invalid_message));
EXPECT_EQ(GCMDecryptionResult::INVALID_CRYPTO_KEY_HEADER,
decryption_result());
IncomingMessage valid_message;
valid_message.data["encryption"] = kValidEncryptionHeader;
valid_message.data["crypto-key"] = kValidCryptoKeyHeader;
valid_message.raw_data = "foo";
ASSERT_NO_FATAL_FAILURE(Decrypt(valid_message));
EXPECT_NE(GCMDecryptionResult::INVALID_CRYPTO_KEY_HEADER,
decryption_result());
}
TEST_F(GCMEncryptionProviderTest, VerifiesCryptoKeyHeaderParsingThirdValue) {
// The Crypto-Key header must be parsable and contain valid values, in which
// values will be ignored unless they contain a "dh" property.
IncomingMessage valid_message;
valid_message.data["encryption"] = kValidEncryptionHeader;
valid_message.data["crypto-key"] = kValidThreeValueCryptoKeyHeader;
valid_message.raw_data = "foo";
ASSERT_NO_FATAL_FAILURE(Decrypt(valid_message));
EXPECT_NE(GCMDecryptionResult::INVALID_CRYPTO_KEY_HEADER,
decryption_result());
}
TEST_F(GCMEncryptionProviderTest, VerifiesCryptoKeyHeaderSingleDhEntry) {
// The Crypto-Key header must include at most one value that contains the
// "dh" property. Having more than once occurrence is forbidden.
IncomingMessage valid_message;
valid_message.data["encryption"] = kValidEncryptionHeader;
valid_message.data["crypto-key"] = kInvalidThreeValueCryptoKeyHeader;
valid_message.raw_data = "foo";
ASSERT_NO_FATAL_FAILURE(Decrypt(valid_message));
EXPECT_EQ(GCMDecryptionResult::INVALID_CRYPTO_KEY_HEADER,
decryption_result());
}
TEST_F(GCMEncryptionProviderTest, VerifiesExistingKeys) {
// When both headers are valid, the encryption keys still must be known to
// the GCM key store before the message can be decrypted.
IncomingMessage message;
message.data["encryption"] = kValidEncryptionHeader;
message.data["crypto-key"] = kValidCryptoKeyHeader;
message.raw_data = "foo";
ASSERT_NO_FATAL_FAILURE(Decrypt(message));
EXPECT_EQ(GCMDecryptionResult::NO_KEYS, decryption_result());
std::string public_key, auth_secret;
encryption_provider()->GetEncryptionInfo(
kExampleAppId, "" /* empty authorized entity for non-InstanceID */,
base::BindOnce(&GCMEncryptionProviderTest::DidGetEncryptionInfo,
base::Unretained(this), &public_key, &auth_secret));
// Getting (or creating) the public key will be done asynchronously.
base::RunLoop().RunUntilIdle();
ASSERT_GT(public_key.size(), 0u);
ASSERT_GT(auth_secret.size(), 0u);
ASSERT_NO_FATAL_FAILURE(Decrypt(message));
EXPECT_NE(GCMDecryptionResult::NO_KEYS, decryption_result());
}
TEST_F(GCMEncryptionProviderTest, VerifiesKeyRemovalGCMRegistration) {
// Removing encryption info for an InstanceID token shouldn't affect a
// non-InstanceID GCM registration.
// Non-InstanceID callers pass an empty string for authorized_entity.
std::string authorized_entity_gcm;
std::string authorized_entity_1 = kExampleAuthorizedEntity + std::string("1");
std::string authorized_entity_2 = kExampleAuthorizedEntity + std::string("2");
// Should create encryption info.
std::string public_key, auth_secret;
encryption_provider()->GetEncryptionInfo(
kExampleAppId, authorized_entity_gcm,
base::BindOnce(&GCMEncryptionProviderTest::DidGetEncryptionInfo,
base::Unretained(this), &public_key, &auth_secret));
base::RunLoop().RunUntilIdle();
// Should get encryption info created above.
std::string read_public_key, read_auth_secret;
encryption_provider()->GetEncryptionInfo(
kExampleAppId, authorized_entity_gcm,
base::BindOnce(&GCMEncryptionProviderTest::DidGetEncryptionInfo,
base::Unretained(this), &read_public_key,
&read_auth_secret));
base::RunLoop().RunUntilIdle();
EXPECT_GT(public_key.size(), 0u);
EXPECT_GT(auth_secret.size(), 0u);
EXPECT_EQ(public_key, read_public_key);
EXPECT_EQ(auth_secret, read_auth_secret);
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_gcm, true));
encryption_provider()->RemoveEncryptionInfo(
kExampleAppId, authorized_entity_1, base::DoNothing());
base::RunLoop().RunUntilIdle();
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_gcm, true));
encryption_provider()->RemoveEncryptionInfo(kExampleAppId, "*",
base::DoNothing());
base::RunLoop().RunUntilIdle();
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_gcm, true));
encryption_provider()->RemoveEncryptionInfo(
kExampleAppId, authorized_entity_gcm, base::DoNothing());
base::RunLoop().RunUntilIdle();
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_gcm, false));
}
TEST_F(GCMEncryptionProviderTest, VerifiesKeyRemovalInstanceIDToken) {
// Removing encryption info for a non-InstanceID GCM registration shouldn't
// affect an InstanceID token.
// Non-InstanceID callers pass an empty string for authorized_entity.
std::string authorized_entity_gcm;
std::string authorized_entity_1 = kExampleAuthorizedEntity + std::string("1");
std::string authorized_entity_2 = kExampleAuthorizedEntity + std::string("2");
std::string public_key_1, auth_secret_1;
encryption_provider()->GetEncryptionInfo(
kExampleAppId, authorized_entity_1,
base::BindOnce(&GCMEncryptionProviderTest::DidGetEncryptionInfo,
base::Unretained(this), &public_key_1, &auth_secret_1));
base::RunLoop().RunUntilIdle();
EXPECT_GT(public_key_1.size(), 0u);
EXPECT_GT(auth_secret_1.size(), 0u);
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_1, true));
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_2, false));
std::string public_key_2, auth_secret_2;
encryption_provider()->GetEncryptionInfo(
kExampleAppId, authorized_entity_2,
base::BindOnce(&GCMEncryptionProviderTest::DidGetEncryptionInfo,
base::Unretained(this), &public_key_2, &auth_secret_2));
base::RunLoop().RunUntilIdle();
EXPECT_GT(public_key_2.size(), 0u);
EXPECT_GT(auth_secret_2.size(), 0u);
EXPECT_NE(public_key_1, public_key_2);
EXPECT_NE(auth_secret_1, auth_secret_2);
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_1, true));
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_2, true));
std::string read_public_key_1, read_auth_secret_1;
encryption_provider()->GetEncryptionInfo(
kExampleAppId, authorized_entity_1,
base::BindOnce(&GCMEncryptionProviderTest::DidGetEncryptionInfo,
base::Unretained(this), &read_public_key_1,
&read_auth_secret_1));
base::RunLoop().RunUntilIdle();
// Should have returned existing info for authorized_entity_1.
EXPECT_EQ(public_key_1, read_public_key_1);
EXPECT_EQ(auth_secret_1, read_auth_secret_1);
encryption_provider()->RemoveEncryptionInfo(
kExampleAppId, authorized_entity_gcm, base::DoNothing());
base::RunLoop().RunUntilIdle();
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_1, true));
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_2, true));
encryption_provider()->RemoveEncryptionInfo(
kExampleAppId, authorized_entity_1, base::DoNothing());
base::RunLoop().RunUntilIdle();
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_1, false));
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_2, true));
std::string public_key_1_refreshed, auth_secret_1_refreshed;
encryption_provider()->GetEncryptionInfo(
kExampleAppId, authorized_entity_1,
base::BindOnce(&GCMEncryptionProviderTest::DidGetEncryptionInfo,
base::Unretained(this), &public_key_1_refreshed,
&auth_secret_1_refreshed));
base::RunLoop().RunUntilIdle();
// Since the info was removed, GetEncryptionInfo should have created new info.
EXPECT_GT(public_key_1_refreshed.size(), 0u);
EXPECT_GT(auth_secret_1_refreshed.size(), 0u);
EXPECT_NE(public_key_1, public_key_1_refreshed);
EXPECT_NE(auth_secret_1, auth_secret_1_refreshed);
EXPECT_NE(public_key_2, public_key_1_refreshed);
EXPECT_NE(auth_secret_2, auth_secret_1_refreshed);
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_1, true));
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_2, true));
encryption_provider()->RemoveEncryptionInfo(kExampleAppId, "*",
base::DoNothing());
base::RunLoop().RunUntilIdle();
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_1, false));
ASSERT_NO_FATAL_FAILURE(CheckHasKey(authorized_entity_2, false));
}
void GCMEncryptionProviderTest::TestEncryptionRoundTrip(
const std::string& app_id,
const std::string& authorized_entity,
GCMMessageCryptographer::Version version,
bool use_internal_raw_data_for_draft08) {
// Performs a full round-trip of the encryption feature, including getting a
// public/private key-key and performing the cryptographic operations. This
// is more of an integration test than a unit test.
ECPrivateKeyUniquePtr key, server_key;
std::string auth_secret, server_authentication;
// Retrieve the public/private key-key immediately from the key store, given
// that the GCMEncryptionProvider will only share the public key with users.
// Also create a second key, which will act as the server's keys.
encryption_provider()->key_store_->CreateKeys(
app_id, authorized_entity,
base::BindOnce(&GCMEncryptionProviderTest::HandleKeysCallback,
base::Unretained(this), &key, &auth_secret));
encryption_provider()->key_store_->CreateKeys(
"server-" + app_id, authorized_entity,
base::BindOnce(&GCMEncryptionProviderTest::HandleKeysCallback,
base::Unretained(this), &server_key,
&server_authentication));
// Creating the public keys will be done asynchronously.
base::RunLoop().RunUntilIdle();
std::string public_key, server_public_key;
ASSERT_TRUE(GetRawPublicKey(*key, &public_key));
ASSERT_TRUE(GetRawPublicKey(*server_key, &server_public_key));
ASSERT_GT(public_key.size(), 0u);
ASSERT_GT(server_public_key.size(), 0u);
std::string private_key, server_private_key;
ASSERT_TRUE(GetRawPublicKey(*key, &private_key));
ASSERT_TRUE(GetRawPublicKey(*server_key, &server_private_key));
ASSERT_GT(private_key.size(), 0u);
ASSERT_GT(server_private_key.size(), 0u);
IncomingMessage message;
message.sender_id = authorized_entity;
switch (version) {
case GCMMessageCryptographer::Version::DRAFT_03: {
// Creates a cryptographically secure salt of |salt_size| octets in size,
// and calculate the shared secret for the message.
std::string salt(16, '\0');
crypto::RandBytes(base::as_writable_byte_span(salt));
std::string shared_secret;
ASSERT_TRUE(
ComputeSharedP256Secret(*key, server_public_key, &shared_secret));
size_t record_size;
// Encrypts the |kExampleMessage| using the generated shared key and the
// random |salt|, storing the result in |record_size| and the message.
GCMMessageCryptographer cryptographer(version);
std::string ciphertext;
ASSERT_TRUE(cryptographer.Encrypt(
public_key, server_public_key, shared_secret, auth_secret, salt,
kExampleMessage, &record_size, &ciphertext));
std::string encoded_salt, encoded_key;
// Compile the incoming GCM message, including the required headers.
base::Base64UrlEncode(salt, base::Base64UrlEncodePolicy::INCLUDE_PADDING,
&encoded_salt);
base::Base64UrlEncode(server_public_key,
base::Base64UrlEncodePolicy::INCLUDE_PADDING,
&encoded_key);
std::stringstream encryption_header;
encryption_header << "rs=" << base::NumberToString(record_size) << ";";
encryption_header << "salt=" << encoded_salt;
message.data["encryption"] = encryption_header.str();
message.data["crypto-key"] = "dh=" + encoded_key;
message.raw_data.swap(ciphertext);
break;
}
case GCMMessageCryptographer::Version::DRAFT_08: {
ASSERT_NO_FATAL_FAILURE(
Encrypt(authorized_entity, public_key, auth_secret, kExampleMessage));
ASSERT_EQ(GCMEncryptionResult::ENCRYPTED_DRAFT_08, encryption_result());
message.data["content-encoding"] = "aes128gcm";
if (use_internal_raw_data_for_draft08) {
message.data["_googRawData"] = base::Base64Encode(encrypted_message());
} else {
message.raw_data = encrypted_message();
}
break;
}
}
ASSERT_TRUE(encryption_provider()->IsEncryptedMessage(message));
// Decrypt the message, and expect everything to go wonderfully well.
ASSERT_NO_FATAL_FAILURE(Decrypt(message));
ASSERT_EQ(version == GCMMessageCryptographer::Version::DRAFT_03
? GCMDecryptionResult::DECRYPTED_DRAFT_03
: GCMDecryptionResult::DECRYPTED_DRAFT_08,
decryption_result());
EXPECT_TRUE(decrypted_message().decrypted);
EXPECT_EQ(kExampleMessage, decrypted_message().raw_data);
}
void GCMEncryptionProviderTest::TestEncryptionNoKeys(
const std::string& app_id,
const std::string& authorized_entity) {
// Only create proper keys for receipeint without creating keys for sender.
ECPrivateKeyUniquePtr key;
std::string auth_secret;
encryption_provider()->key_store_->CreateKeys(
"receiver" + app_id, authorized_entity,
base::BindOnce(&GCMEncryptionProviderTest::HandleKeysCallback,
base::Unretained(this), &key, &auth_secret));
// Creating the public keys will be done asynchronously.
base::RunLoop().RunUntilIdle();
std::string public_key;
ASSERT_TRUE(GetRawPublicKey(*key, &public_key));
ASSERT_GT(public_key.size(), 0u);
ASSERT_NO_FATAL_FAILURE(
Encrypt(authorized_entity, public_key, auth_secret, kExampleMessage));
EXPECT_EQ(GCMEncryptionResult::NO_KEYS, encryption_result());
}
TEST_F(GCMEncryptionProviderTest, EncryptionRoundTripGCMRegistration) {
// GCMEncryptionProvider::DecryptMessage should succeed when the message was
// sent to a non-InstanceID GCM registration (empty authorized_entity).
ASSERT_NO_FATAL_FAILURE(TestEncryptionRoundTrip(
kExampleAppId, "" /* empty authorized entity for non-InstanceID */,
GCMMessageCryptographer::Version::DRAFT_03));
}
TEST_F(GCMEncryptionProviderTest, EncryptionRoundTripInstanceIDToken) {
// GCMEncryptionProvider::DecryptMessage should succeed when the message was
// sent to an InstanceID token (non-empty authorized_entity).
ASSERT_NO_FATAL_FAILURE(
TestEncryptionRoundTrip(kExampleAppId, kExampleAuthorizedEntity,
GCMMessageCryptographer::Version::DRAFT_03));
}
TEST_F(GCMEncryptionProviderTest, EncryptionRoundTripDraft08) {
// GCMEncryptionProvider::DecryptMessage should succeed when the message was
// encrypted following raft-ietf-webpush-encryption-08.
ASSERT_NO_FATAL_FAILURE(
TestEncryptionRoundTrip(kExampleAppId, kExampleAuthorizedEntity,
GCMMessageCryptographer::Version::DRAFT_08));
}
TEST_F(GCMEncryptionProviderTest, EncryptionRoundTripDraft08InternalRawData) {
// GCMEncryptionProvider::DecryptMessage should succeed when the message was
// encrypted following raft-ietf-webpush-encryption-08 with raw_data base64
// encoded in message data.
ASSERT_NO_FATAL_FAILURE(
TestEncryptionRoundTrip(kExampleAppId, kExampleAuthorizedEntity,
GCMMessageCryptographer::Version::DRAFT_08,
/*use_internal_raw_data_for_draft08=*/true));
}
TEST_F(GCMEncryptionProviderTest, EncryptionNoKeys) {
ASSERT_NO_FATAL_FAILURE(
TestEncryptionNoKeys(kExampleAppId, kExampleAuthorizedEntity));
}
} // namespace gcm
|