1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/gcm_driver/crypto/p256_key_util.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <string_view>
#include <vector>
#include "base/logging.h"
#include "base/strings/string_util.h"
#include "crypto/ec_private_key.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
#include "third_party/boringssl/src/include/openssl/ecdh.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
namespace gcm {
namespace {
// A P-256 field element consists of 32 bytes.
const size_t kFieldBytes = 32;
// A P-256 point in uncompressed form consists of 0x04 (to denote that the point
// is uncompressed per SEC1 2.3.3) followed by two, 32-byte field elements.
const size_t kUncompressedPointBytes = 1 + 2 * kFieldBytes;
} // namespace
bool GetRawPublicKey(const crypto::ECPrivateKey& key, std::string* public_key) {
DCHECK(public_key);
std::string candidate_public_key;
// ECPrivateKey::ExportRawPublicKey() returns the EC point in the uncompressed
// point format.
if (!key.ExportRawPublicKey(&candidate_public_key) ||
candidate_public_key.size() != kUncompressedPointBytes) {
DLOG(ERROR) << "Unable to export the public key.";
return false;
}
public_key->erase();
public_key->reserve(kUncompressedPointBytes);
public_key->append(candidate_public_key);
return true;
}
// TODO(peter): Get rid of this once all key management code has been updated
// to use ECPrivateKey instead of std::string.
bool GetRawPrivateKey(const crypto::ECPrivateKey& key,
std::string* private_key) {
DCHECK(private_key);
std::vector<uint8_t> private_key_vector;
if (!key.ExportPrivateKey(&private_key_vector))
return false;
private_key->assign(private_key_vector.begin(), private_key_vector.end());
return true;
}
bool ComputeSharedP256Secret(crypto::ECPrivateKey& key,
std::string_view peer_public_key,
std::string* out_shared_secret) {
DCHECK(out_shared_secret);
EC_KEY* ec_private_key = EVP_PKEY_get0_EC_KEY(key.key());
if (!ec_private_key || !EC_KEY_check_key(ec_private_key)) {
DLOG(ERROR) << "The private key is invalid.";
return false;
}
bssl::UniquePtr<EC_POINT> point(
EC_POINT_new(EC_KEY_get0_group(ec_private_key)));
if (!point || !EC_POINT_oct2point(
EC_KEY_get0_group(ec_private_key), point.get(),
reinterpret_cast<const uint8_t*>(peer_public_key.data()),
peer_public_key.size(), nullptr)) {
DLOG(ERROR) << "Can't convert peer public value to curve point.";
return false;
}
uint8_t result[kFieldBytes];
if (ECDH_compute_key(result, sizeof(result), point.get(), ec_private_key,
nullptr) != sizeof(result)) {
DLOG(ERROR) << "Unable to compute the ECDH shared secret.";
return false;
}
out_shared_secret->assign(reinterpret_cast<char*>(result), sizeof(result));
return true;
}
} // namespace gcm
|