1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "components/gwp_asan/client/guarded_page_allocator.h"
#include <algorithm>
#include <array>
#include <set>
#include <utility>
#include <vector>
#include "base/allocator/buildflags.h"
#include "base/bits.h"
#include "base/functional/callback_helpers.h"
#include "base/memory/page_size.h"
#include "base/memory/raw_ptr.h"
#include "base/test/bind.h"
#include "base/test/gtest_util.h"
#include "base/threading/simple_thread.h"
#include "build/build_config.h"
#include "components/gwp_asan/client/gwp_asan.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace gwp_asan {
namespace internal {
static constexpr size_t kMaxMetadata = 2048;
static constexpr size_t kMaxSlots = 8192;
class BaseGpaTest : public testing::Test {
protected:
BaseGpaTest(size_t max_allocated_pages,
size_t max_metadata,
size_t max_slots,
bool is_partition_alloc)
: is_partition_alloc_(is_partition_alloc),
settings_{AllocatorSettings{
.max_allocated_pages = max_allocated_pages,
.num_metadata = max_metadata,
.total_pages = max_slots,
.sampling_frequency = 0u,
}} {}
void SetUp() override {
ASSERT_TRUE(gpa_.Init(settings_,
base::BindLambdaForTesting([&](size_t allocations) {
allocator_oom_ = true;
}),
is_partition_alloc_));
}
void TearDown() override { gpa_.DestructForTesting(); }
const bool is_partition_alloc_;
const AllocatorSettings settings_;
GuardedPageAllocator gpa_;
bool allocator_oom_ = false;
};
class GuardedPageAllocatorTest : public BaseGpaTest,
public testing::WithParamInterface<bool> {
protected:
GuardedPageAllocatorTest()
: BaseGpaTest(kMaxMetadata, kMaxMetadata, kMaxSlots, GetParam()) {}
// Get a left- or right- aligned allocation (or nullptr on error.)
char* GetAlignedAllocation(bool left_aligned, size_t sz, size_t align = 0) {
for (size_t i = 0; i < 100; i++) {
void* alloc = gpa_.Allocate(sz, align);
if (!alloc)
return nullptr;
uintptr_t addr = reinterpret_cast<uintptr_t>(alloc);
bool is_left_aligned =
(base::bits::AlignUp(addr, base::GetPageSize()) == addr);
if (is_left_aligned == left_aligned)
return reinterpret_cast<char*>(addr);
gpa_.Deallocate(alloc);
}
return nullptr;
}
// Helper that returns the offset of a right-aligned allocation in the
// allocation's page.
uintptr_t GetRightAlignedAllocationOffset(size_t size, size_t align) {
const uintptr_t page_mask = base::GetPageSize() - 1;
void* buf = GetAlignedAllocation(false, size, align);
CHECK(buf);
gpa_.Deallocate(buf);
return reinterpret_cast<uintptr_t>(buf) & page_mask;
}
};
INSTANTIATE_TEST_SUITE_P(VaryPartitionAlloc,
GuardedPageAllocatorTest,
testing::Values(false, true));
#if defined(GTEST_HAS_DEATH_TEST)
TEST_P(GuardedPageAllocatorTest, SingleAllocDealloc) {
char* buf = reinterpret_cast<char*>(gpa_.Allocate(base::GetPageSize()));
EXPECT_NE(buf, nullptr);
EXPECT_TRUE(gpa_.PointerIsMine(buf));
memset(buf, 'A', base::GetPageSize());
EXPECT_DEATH(buf[base::GetPageSize()] = 'A', "");
gpa_.Deallocate(buf);
EXPECT_DEATH(buf[0] = 'B', "");
EXPECT_DEATH(gpa_.Deallocate(buf), "");
}
TEST_P(GuardedPageAllocatorTest, CrashOnBadDeallocPointer) {
EXPECT_DEATH(gpa_.Deallocate(nullptr), "");
char* buf = reinterpret_cast<char*>(gpa_.Allocate(8));
EXPECT_DEATH(gpa_.Deallocate(buf + 1), "");
gpa_.Deallocate(buf);
}
#endif // defined(GTEST_HAS_DEATH_TEST)
TEST_P(GuardedPageAllocatorTest, PointerIsMine) {
void* buf = gpa_.Allocate(1);
auto malloc_ptr = std::make_unique<char>();
EXPECT_TRUE(gpa_.PointerIsMine(buf));
gpa_.Deallocate(buf);
EXPECT_TRUE(gpa_.PointerIsMine(buf));
int stack_var;
EXPECT_FALSE(gpa_.PointerIsMine(&stack_var));
EXPECT_FALSE(gpa_.PointerIsMine(malloc_ptr.get()));
}
#if defined(GTEST_HAS_DEATH_TEST)
TEST_P(GuardedPageAllocatorTest, GetRequestedSize) {
void* buf = gpa_.Allocate(100);
EXPECT_EQ(gpa_.GetRequestedSize(buf), 100U);
#if !BUILDFLAG(IS_APPLE)
EXPECT_DEATH({ gpa_.GetRequestedSize((char*)buf + 1); }, "");
#else
EXPECT_EQ(gpa_.GetRequestedSize((char*)buf + 1), 0U);
#endif
}
TEST_P(GuardedPageAllocatorTest, LeftAlignedAllocation) {
char* buf = GetAlignedAllocation(true, 16);
ASSERT_NE(buf, nullptr);
EXPECT_DEATH(buf[-1] = 'A', "");
buf[0] = 'A';
buf[base::GetPageSize() - 1] = 'A';
gpa_.Deallocate(buf);
}
TEST_P(GuardedPageAllocatorTest, RightAlignedAllocation) {
char* buf =
GetAlignedAllocation(false, GuardedPageAllocator::kGpaAllocAlignment);
ASSERT_NE(buf, nullptr);
buf[-1] = 'A';
buf[0] = 'A';
EXPECT_DEATH(buf[GuardedPageAllocator::kGpaAllocAlignment] = 'A', "");
gpa_.Deallocate(buf);
}
#endif // defined(GTEST_HAS_DEATH_TEST)
TEST_P(GuardedPageAllocatorTest, AllocationAlignment) {
const uintptr_t page_size = base::GetPageSize();
EXPECT_EQ(GetRightAlignedAllocationOffset(9, 1), page_size - 9);
EXPECT_EQ(GetRightAlignedAllocationOffset(9, 2), page_size - 10);
EXPECT_EQ(GetRightAlignedAllocationOffset(9, 4), page_size - 12);
EXPECT_EQ(GetRightAlignedAllocationOffset(9, 8), page_size - 16);
EXPECT_EQ(GetRightAlignedAllocationOffset(513, 512), page_size - 1024);
// Default alignment aligns up to the next lowest power of two.
EXPECT_EQ(GetRightAlignedAllocationOffset(5, 0), page_size - 8);
EXPECT_EQ(GetRightAlignedAllocationOffset(9, 0), page_size - 16);
// But only up to 16 bytes.
EXPECT_EQ(GetRightAlignedAllocationOffset(513, 0), page_size - (512 + 16));
// We don't support aligning by more than a page.
EXPECT_EQ(GetAlignedAllocation(false, 5, page_size * 2), nullptr);
}
TEST_P(GuardedPageAllocatorTest, OutOfMemoryCallback) {
for (size_t i = 0; i < kMaxMetadata; i++)
EXPECT_NE(gpa_.Allocate(1), nullptr);
for (size_t i = 0; i < GuardedPageAllocator::kOutOfMemoryCount - 1; i++)
EXPECT_EQ(gpa_.Allocate(1), nullptr);
EXPECT_FALSE(allocator_oom_);
EXPECT_EQ(gpa_.Allocate(1), nullptr);
EXPECT_TRUE(allocator_oom_);
}
class GuardedPageAllocatorParamTest
: public BaseGpaTest,
public testing::WithParamInterface<size_t> {
protected:
GuardedPageAllocatorParamTest()
: BaseGpaTest(GetParam(), kMaxMetadata, kMaxSlots, false) {}
};
TEST_P(GuardedPageAllocatorParamTest, AllocDeallocAllPages) {
size_t num_allocations = GetParam();
std::array<char*, kMaxMetadata> bufs;
for (size_t i = 0; i < num_allocations; i++) {
bufs[i] = reinterpret_cast<char*>(gpa_.Allocate(1));
EXPECT_NE(bufs[i], nullptr);
EXPECT_TRUE(gpa_.PointerIsMine(bufs[i]));
}
EXPECT_EQ(gpa_.Allocate(1), nullptr);
gpa_.Deallocate(bufs[0]);
bufs[0] = reinterpret_cast<char*>(gpa_.Allocate(1));
EXPECT_NE(bufs[0], nullptr);
EXPECT_TRUE(gpa_.PointerIsMine(bufs[0]));
// Ensure that no allocation is returned twice.
std::set<char*> ptr_set;
for (size_t i = 0; i < num_allocations; i++)
ptr_set.insert(bufs[i]);
EXPECT_EQ(ptr_set.size(), num_allocations);
for (size_t i = 0; i < num_allocations; i++) {
SCOPED_TRACE(i);
// Ensure all allocations are valid and writable.
bufs[i][0] = 'A';
gpa_.Deallocate(bufs[i]);
// Performing death tests post-allocation times out on Windows.
}
}
INSTANTIATE_TEST_SUITE_P(VaryNumPages,
GuardedPageAllocatorParamTest,
testing::Values(1, kMaxMetadata / 2, kMaxMetadata));
class ThreadedAllocCountDelegate : public base::DelegateSimpleThread::Delegate {
public:
ThreadedAllocCountDelegate(GuardedPageAllocator* gpa,
std::array<void*, kMaxMetadata>* allocations)
: gpa_(gpa), allocations_(allocations) {}
ThreadedAllocCountDelegate(const ThreadedAllocCountDelegate&) = delete;
ThreadedAllocCountDelegate& operator=(const ThreadedAllocCountDelegate&) =
delete;
void Run() override {
for (size_t i = 0; i < kMaxMetadata; i++) {
(*allocations_)[i] = gpa_->Allocate(1);
}
}
private:
raw_ptr<GuardedPageAllocator> gpa_;
raw_ptr<std::array<void*, kMaxMetadata>> allocations_;
};
// Test that no pages are double-allocated or left unallocated, and that no
// extra pages are allocated when there's concurrent calls to Allocate().
TEST_P(GuardedPageAllocatorTest, ThreadedAllocCount) {
constexpr size_t num_threads = 2;
std::array<std::array<void*, kMaxMetadata>, num_threads> allocations;
{
base::DelegateSimpleThreadPool threads("alloc_threads", num_threads);
threads.Start();
std::vector<std::unique_ptr<ThreadedAllocCountDelegate>> delegates;
for (size_t i = 0; i < num_threads; i++) {
auto delegate =
std::make_unique<ThreadedAllocCountDelegate>(&gpa_, &allocations[i]);
threads.AddWork(delegate.get());
delegates.push_back(std::move(delegate));
}
threads.JoinAll();
}
std::set<void*> allocations_set;
for (size_t i = 0; i < num_threads; i++) {
for (size_t j = 0; j < kMaxMetadata; j++) {
allocations_set.insert(allocations[i][j]);
}
}
allocations_set.erase(nullptr);
EXPECT_EQ(allocations_set.size(), kMaxMetadata);
}
class ThreadedHighContentionDelegate
: public base::DelegateSimpleThread::Delegate {
public:
explicit ThreadedHighContentionDelegate(GuardedPageAllocator* gpa)
: gpa_(gpa) {}
ThreadedHighContentionDelegate(const ThreadedHighContentionDelegate&) =
delete;
ThreadedHighContentionDelegate& operator=(
const ThreadedHighContentionDelegate&) = delete;
void Run() override {
char* buf;
while ((buf = reinterpret_cast<char*>(gpa_->Allocate(1))) == nullptr) {
base::PlatformThread::Sleep(base::Nanoseconds(5000));
}
// Verify that no other thread has access to this page.
EXPECT_EQ(buf[0], 0);
// Mark this page and allow some time for another thread to potentially
// gain access to this page.
buf[0] = 'A';
base::PlatformThread::Sleep(base::Nanoseconds(10000));
EXPECT_EQ(buf[0], 'A');
// Unmark this page and deallocate.
buf[0] = 0;
gpa_->Deallocate(buf);
}
private:
raw_ptr<GuardedPageAllocator> gpa_;
};
// Test that allocator remains in consistent state under high contention and
// doesn't double-allocate pages or fail to deallocate pages.
TEST_P(GuardedPageAllocatorTest, ThreadedHighContention) {
#if BUILDFLAG(IS_ANDROID)
constexpr size_t num_threads = 200;
#else
constexpr size_t num_threads = 1000;
#endif
{
base::DelegateSimpleThreadPool threads("page_writers", num_threads);
threads.Start();
std::vector<std::unique_ptr<ThreadedHighContentionDelegate>> delegates;
for (size_t i = 0; i < num_threads; i++) {
auto delegate = std::make_unique<ThreadedHighContentionDelegate>(&gpa_);
threads.AddWork(delegate.get());
delegates.push_back(std::move(delegate));
}
threads.JoinAll();
}
// Verify all pages have been deallocated now that all threads are done.
for (size_t i = 0; i < kMaxMetadata; i++)
EXPECT_NE(gpa_.Allocate(1), nullptr);
}
class GuardedPageAllocatorPartitionAllocTest : public BaseGpaTest {
protected:
GuardedPageAllocatorPartitionAllocTest()
: BaseGpaTest(kMaxMetadata, kMaxMetadata, kMaxSlots, true) {}
};
TEST_F(GuardedPageAllocatorPartitionAllocTest,
DifferentPartitionsNeverOverlap) {
constexpr const char* kType1 = "fake type1";
constexpr const char* kType2 = "fake type2";
std::set<void*> type1, type2;
for (size_t i = 0; i < kMaxSlots * 3; i++) {
void* alloc1 = gpa_.Allocate(1, 0, kType1);
ASSERT_NE(alloc1, nullptr);
void* alloc2 = gpa_.Allocate(1, 0, kType2);
ASSERT_NE(alloc2, nullptr);
type1.insert(alloc1);
type2.insert(alloc2);
gpa_.Deallocate(alloc1);
gpa_.Deallocate(alloc2);
}
std::vector<void*> intersection;
std::set_intersection(type1.begin(), type1.end(), type2.begin(), type2.end(),
std::back_inserter(intersection));
EXPECT_EQ(intersection.size(), 0u);
}
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
constexpr size_t kSmallMaxSlots = kMaxMetadata;
class GuardedPageAllocatorRawPtrTest : public BaseGpaTest {
protected:
GuardedPageAllocatorRawPtrTest()
// For these tests the number of available slots has to be equal to
// the number of metadata entries. We don't want to end up in a
// situation where an allocation attempt fails because there's nowhere to
// store metadata while there are still available allocation slots.
: BaseGpaTest(kSmallMaxSlots, kSmallMaxSlots, kSmallMaxSlots, false) {}
};
TEST_F(GuardedPageAllocatorRawPtrTest, DeferDeallocation) {
for (size_t i = 0; i < kSmallMaxSlots - 1; i++)
EXPECT_NE(gpa_.Allocate(1), nullptr);
raw_ptr<void> ptr = gpa_.Allocate(1);
gpa_.Deallocate(ptr);
// Dangling raw_ptr should prevent the allocation from being reused.
EXPECT_EQ(gpa_.Allocate(1), nullptr);
ptr = nullptr;
// Now we should get one slot back...
EXPECT_NE(gpa_.Allocate(1), nullptr);
// But just one.
EXPECT_EQ(gpa_.Allocate(1), nullptr);
}
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
} // namespace internal
} // namespace gwp_asan
|