1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/history_embeddings/history_embeddings_service.h"
#include <algorithm>
#include <tuple>
#include "base/feature_list.h"
#include "base/files/file_path.h"
#include "base/functional/bind.h"
#include "base/metrics/histogram_functions.h"
#include "base/strings/strcat.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "base/time/time.h"
#include "base/timer/elapsed_timer.h"
#include "base/token.h"
#include "base/uuid.h"
#include "components/history/core/browser/history_backend.h"
#include "components/history/core/browser/history_types.h"
#include "components/history/core/browser/url_database.h"
#include "components/history/core/browser/url_row.h"
#include "components/history_embeddings/core/search_strings_update_listener.h"
#include "components/history_embeddings/history_embeddings_features.h"
#include "components/history_embeddings/sql_database.h"
#include "components/history_embeddings/vector_database.h"
#include "components/optimization_guide/core/hints/optimization_guide_decider.h"
#include "components/os_crypt/async/browser/os_crypt_async.h"
#include "components/page_content_annotations/core/page_content_annotations_service.h"
#include "components/passage_embeddings/passage_embeddings_types.h"
#include "url/gurl.h"
namespace history_embeddings {
size_t CountWords(const std::string& s) {
if (s.empty()) {
return 0;
}
size_t word_count = (s[0] == ' ') ? 0 : 1;
for (size_t i = 1; i < s.length(); i++) {
if (s[i] != ' ' && s[i - 1] == ' ') {
word_count++;
}
}
return word_count;
}
namespace {
// This corresponds to UMA histogram enum `EmbeddingsQueryFiltered`
// in tools/metrics/histograms/metadata/history/enums.xml
enum class QueryFiltered {
NOT_FILTERED,
FILTERED_NOT_ASCII,
FILTERED_PHRASE_MATCH,
FILTERED_TERM_MATCH,
FILTERED_ONE_WORD_HASH_MATCH,
FILTERED_TWO_WORD_HASH_MATCH,
// These enum values are logged in UMA. Do not reuse or skip any values.
// The order doesn't need to be chronological, but keep identities stable.
ENUM_COUNT,
};
// Record UMA histogram with query filter status.
void RecordQueryFiltered(QueryFiltered status) {
base::UmaHistogramEnumeration("History.Embeddings.QueryFiltered", status,
QueryFiltered::ENUM_COUNT);
}
void FinishSearchResultWithHistory(
const scoped_refptr<base::SequencedTaskRunner> task_runner,
SearchResultCallback callback,
SearchResult result,
std::vector<ScoredUrlRow> scored_url_rows,
history::HistoryBackend* history_backend,
history::URLDatabase* url_database) {
if (url_database) {
// Move each ScoredUrlRow into the SearchResult with more info from
// the history database.
result.scored_url_rows.reserve(scored_url_rows.size());
for (ScoredUrlRow& scored_url_row : scored_url_rows) {
result.scored_url_rows.emplace_back(std::move(scored_url_row));
if (!url_database->GetURLRow(
result.scored_url_rows.back().scored_url.url_id,
&result.scored_url_rows.back().row)) {
// This omission covers an edge case and should generally not happen
// unless a notification was missed or the history database and
// history_embeddings database went out of sync. It's theoretically
// possible since operations across separate databases are not atomic.
result.scored_url_rows.pop_back();
} else {
history_backend->GetIsUrlKnownToSync(
result.scored_url_rows.back().row.id(),
&result.scored_url_rows.back().is_url_known_to_sync);
}
}
}
task_runner->PostTask(FROM_HERE, base::BindOnce(callback, std::move(result)));
}
// When `kSearchScoreThreshold` is set <0, the threshold in the model metadata
// will be used. If the metadata also doesn't specify a threshold (old models
// don't), then 0.9 will be used. This allows finch and command line to override
// the threshold if necessary while ensuring different users with different
// models are all using the correct threshold for their model.
float GetScoreThreshold(
const passage_embeddings::EmbedderMetadata& embedder_metadata) {
if (GetFeatureParameters().search_score_threshold >= 0) {
return GetFeatureParameters().search_score_threshold;
}
if (embedder_metadata.search_score_threshold.has_value()) {
return *embedder_metadata.search_score_threshold;
}
// 0.9 was the correct threshold for the original model before the threshold
// was added to the metadata.
return 0.9;
}
} // namespace
////////////////////////////////////////////////////////////////////////////////
ScoredUrlRow::ScoredUrlRow(ScoredUrl scored_url)
: scored_url(std::move(scored_url)),
passages_embeddings(scored_url.url_id,
scored_url.visit_id,
scored_url.visit_time) {}
ScoredUrlRow::ScoredUrlRow(const ScoredUrlRow&) = default;
ScoredUrlRow::ScoredUrlRow(ScoredUrlRow&&) = default;
ScoredUrlRow::~ScoredUrlRow() = default;
ScoredUrlRow& ScoredUrlRow::operator=(const ScoredUrlRow&) = default;
ScoredUrlRow& ScoredUrlRow::operator=(ScoredUrlRow&&) = default;
std::string ScoredUrlRow::GetBestPassage() const {
CHECK(passages_embeddings.passages.passages_size() != 0);
size_t best_index = GetBestScoreIndices(1, 0).front();
CHECK_LT(best_index,
static_cast<size_t>(passages_embeddings.passages.passages_size()));
return passages_embeddings.passages.passages(best_index);
}
std::vector<size_t> ScoredUrlRow::GetBestScoreIndices(
size_t min_count,
size_t min_word_count) const {
using ScoreWordsIndex =
std::tuple</*score=*/float, /*word_count=*/size_t, /*index=*/size_t>;
std::vector<ScoreWordsIndex> data;
data.reserve(scores.size());
for (size_t i = 0; i < scores.size(); i++) {
// The word count could be calculated from the passage directly, but
// since it has already been calculated before, use the value stored
// with the embedding for efficiency.
data.emplace_back(
scores[i], passages_embeddings.embeddings[i].GetPassageWordCount(), i);
}
// Sort tuples naturally, descending, so that highest scores come first.
// Note that if scores are exactly equal, the longer passage is preferred,
// and the index comes last to break any remaining ties.
std::sort(data.begin(), data.end(), std::greater());
size_t word_sum = 0;
std::vector<size_t> indices;
indices.reserve(min_count);
for (const ScoreWordsIndex& item : data) {
if (indices.size() >= min_count && word_sum >= min_word_count) {
break;
}
indices.push_back(std::get<2>(item));
word_sum += std::get<1>(item);
}
return indices;
}
////////////////////////////////////////////////////////////////////////////////
SearchResult::SearchResult() = default;
SearchResult::SearchResult(SearchResult&&) = default;
SearchResult::~SearchResult() = default;
SearchResult& SearchResult::operator=(SearchResult&&) = default;
SearchResult SearchResult::Clone() {
// Cannot copy `answerer_result`; it should not have substance.
CHECK(!answerer_result.log_entry);
SearchResult clone;
clone.session_id = session_id;
clone.query = query;
clone.time_range_start = time_range_start;
clone.count = count;
clone.search_params = search_params;
clone.scored_url_rows = scored_url_rows;
return clone;
}
bool SearchResult::IsContinuationOf(const SearchResult& other) {
return session_id == other.session_id && query == other.query;
}
const std::string& SearchResult::AnswerText() const {
return answerer_result.answer.text();
}
size_t SearchResult::AnswerIndex() const {
for (size_t i = 0; i < scored_url_rows.size(); i++) {
// Note, the spec isn't used because there may be minor differences between
// the strings, for example "http://other.com" versus "http://other.com/".
if (scored_url_rows[i].row.url() == GURL(answerer_result.url)) {
return i;
}
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
HistoryEmbeddingsService::HistoryEmbeddingsService(
os_crypt_async::OSCryptAsync* os_crypt_async,
history::HistoryService* history_service,
page_content_annotations::PageContentAnnotationsService*
page_content_annotations_service,
optimization_guide::OptimizationGuideDecider* optimization_guide_decider,
passage_embeddings::EmbedderMetadataProvider* embedder_metadata_provider,
passage_embeddings::Embedder* embedder,
std::unique_ptr<Answerer> answerer,
std::unique_ptr<IntentClassifier> intent_classifier)
: os_crypt_async_(os_crypt_async),
history_service_(history_service),
page_content_annotations_service_(page_content_annotations_service),
optimization_guide_decider_(optimization_guide_decider),
embedder_(embedder),
answerer_(std::move(answerer)),
intent_classifier_(std::move(intent_classifier)),
query_id_weak_ptr_factory_(&query_id_),
weak_ptr_factory_(this) {
// The history service is never nullptr; even unit tests should provide it.
CHECK(history_service_);
storage_ = base::SequenceBound<Storage>(
base::ThreadPool::CreateSequencedTaskRunner(
{base::MayBlock(), base::TaskPriority::USER_BLOCKING,
base::TaskShutdownBehavior::BLOCK_SHUTDOWN}),
history_service_->history_dir(),
GetFeatureParameters().erase_non_ascii_characters,
GetFeatureParameters().delete_embeddings);
history_service_observation_.Observe(history_service_);
// Notify page content annotations service that we will need the content
// visibility model during the session.
if (page_content_annotations_service_) {
page_content_annotations_service_->RequestAndNotifyWhenModelAvailable(
page_content_annotations::AnnotationType::kContentVisibility,
base::DoNothing());
}
if (optimization_guide_decider_) {
optimization_guide_decider_->RegisterOptimizationTypes(
{optimization_guide::proto::HISTORY_EMBEDDINGS});
}
// Observation needs to be set up after the `storage_` construction since the
// update notification could be invoked immediately.
if (embedder_metadata_provider) {
embedder_metadata_observation_.Observe(embedder_metadata_provider);
}
}
HistoryEmbeddingsService::~HistoryEmbeddingsService() = default;
bool HistoryEmbeddingsService::IsEligible(const GURL& url) {
bool eligible;
if (!GetFeatureParameters().use_url_filter || !optimization_guide_decider_) {
eligible = true;
} else {
eligible = optimization_guide_decider_->CanApplyOptimization(
url, optimization_guide::proto::HISTORY_EMBEDDINGS,
/*optimization_metadata=*/nullptr) !=
optimization_guide::OptimizationGuideDecision::kFalse;
}
if (!eligible) {
passages_stored_callback_for_tests_.Run(UrlData(0, 0, base::Time()));
}
return eligible;
}
void HistoryEmbeddingsService::ComputeAndStorePassageEmbeddings(
history::URLID url_id,
history::VisitID visit_id,
base::Time visit_time,
std::vector<std::string> passages) {
if (history_embeddings::GetFeatureParameters().use_database_before_embedder) {
GetUrlData(url_id, base::BindOnce(
&HistoryEmbeddingsService::
ComputeAndStorePassageEmbeddingsWithExistingData,
weak_ptr_factory_.GetWeakPtr(),
UrlData(url_id, visit_id, visit_time),
std::move(passages), base::ElapsedTimer()));
} else {
ComputeAndStorePassageEmbeddingsWithExistingData(
UrlData(url_id, visit_id, visit_time), std::move(passages),
std::nullopt, std::nullopt);
}
}
void HistoryEmbeddingsService::OnOsCryptAsyncReady(
os_crypt_async::Encryptor encryptor) {
storage_.AsyncCall(&Storage::SetEmbedderMetadata)
.WithArgs(embedder_metadata_, std::move(encryptor));
if (GetFeatureParameters().rebuild_embeddings) {
storage_.AsyncCall(&Storage::CollectPassagesWithoutEmbeddings)
.Then(base::BindOnce(&HistoryEmbeddingsService::RebuildAbsentEmbeddings,
weak_ptr_factory_.GetWeakPtr()));
}
}
SearchResult HistoryEmbeddingsService::Search(
SearchResult* previous_search_result,
std::string query,
std::optional<base::Time> time_range_start,
size_t count,
bool skip_answering,
SearchResultCallback callback) {
SearchResult result;
// Create and/or advance a 128-bit base::Token for session_id.
base::Token token = base::Token::CreateRandom();
// Start lowest 16-bits sequence number from zero.
token = base::Token(token.high(), token.low() & ~kSessionIdSequenceBitMask);
if (previous_search_result && !previous_search_result->session_id.empty()) {
std::optional<base::Token> parsed =
base::Token::FromString(previous_search_result->session_id);
if (parsed.has_value()) {
token = *parsed;
// Increment sequence number, allowing any overflow into next higher bits.
token = base::Token(token.high(), token.low() + 1);
}
}
result.session_id = token.ToString();
// Note, this is a copy of raw original query, which may or may not include
// non-ASCII characters. The `query` may later be modified, but not this one.
result.query = query;
result.time_range_start = time_range_start;
result.count = count;
// Set search parameters, kept within result for caller convenience.
result.search_params.skip_answering = skip_answering;
result.search_params.erase_non_ascii_characters =
GetFeatureParameters().erase_non_ascii_characters;
result.search_params.word_match_search_non_ascii_passages =
GetFeatureParameters().word_match_search_non_ascii_passages;
// TODO(crbug.com/390241271): Move this inside Embedder implementations once
// they are no longer wrapped inside the SchedulingEmbedder.
// Note that removing the non-ascii characters in the Embedder could result
// in a query that contains a non-ascii character to be rejected in
// `QueryIsFiltered()` below reducing the chances of the user getting
// meaningful results from that query.
if (result.search_params.erase_non_ascii_characters) {
EraseNonAsciiCharacters(query);
}
result.search_params.word_match_minimum_embedding_score =
GetFeatureParameters().word_match_min_embedding_score;
result.search_params.word_match_score_boost_factor =
GetFeatureParameters().word_match_score_boost_factor;
result.search_params.word_match_limit =
GetFeatureParameters().word_match_limit;
result.search_params.word_match_smoothing_factor =
GetFeatureParameters().word_match_smoothing_factor;
result.search_params.word_match_max_term_count =
GetFeatureParameters().word_match_max_term_count;
result.search_params.word_match_required_term_ratio =
GetFeatureParameters().word_match_required_term_ratio;
if (QueryIsFiltered(query, result.search_params)) {
result.count = 0;
base::SequencedTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(
[](SearchResultCallback callback, SearchResult result) {
callback.Run(std::move(result));
},
callback, result.Clone()));
return result;
}
// Try to cancel the embedding task for the previous query, if any.
if (query_embedding_task_id_) {
embedder_->TryCancel(*query_embedding_task_id_);
}
query_embedding_task_id_ = embedder_->ComputePassagesEmbeddings(
passage_embeddings::PassagePriority::kUserInitiated, {std::move(query)},
base::BindOnce(&HistoryEmbeddingsService::OnQueryEmbeddingComputed,
weak_ptr_factory_.GetWeakPtr(), std::move(callback),
result.Clone()));
return result;
}
void HistoryEmbeddingsService::OnQueryEmbeddingComputed(
SearchResultCallback callback,
SearchResult result,
std::vector<std::string> query_passages,
std::vector<passage_embeddings::Embedding> query_embeddings,
passage_embeddings::Embedder::TaskId task_id,
passage_embeddings::ComputeEmbeddingsStatus status) {
bool succeeded =
status == passage_embeddings::ComputeEmbeddingsStatus::kSuccess;
base::UmaHistogramBoolean("History.Embeddings.QueryEmbeddingSucceeded",
succeeded);
VLOG(1) << "History.Embeddings.QueryEmbeddingSucceeded: " << succeeded
<< " ; Query: '"
<< (query_passages.empty() ? "(NONE)" : query_passages[0]) << "'";
// Ignore the previous query if a new one has been submitted to the embedder.
if (query_embedding_task_id_ && *query_embedding_task_id_ != task_id) {
std::move(callback).Run(std::move(result));
return;
}
// Reset the query embedding task ID to avoid attempting to cancel it later.
query_embedding_task_id_.reset();
if (!succeeded) {
std::move(callback).Run(std::move(result));
return;
}
CHECK_EQ(query_embeddings.size(), 1u);
query_id_++;
storage_.AsyncCall(&Storage::Search)
.WithArgs(query_id_weak_ptr_factory_.GetWeakPtr(), query_id_.load(),
result.search_params, std::move(query_embeddings.front()),
result.time_range_start, result.count)
.Then(base::BindOnce(&HistoryEmbeddingsService::OnSearchCompleted,
weak_ptr_factory_.GetWeakPtr(), std::move(callback),
std::move(result)));
}
base::WeakPtr<HistoryEmbeddingsService> HistoryEmbeddingsService::AsWeakPtr() {
return weak_ptr_factory_.GetWeakPtr();
}
void HistoryEmbeddingsService::SendQualityLog(
SearchResult& result,
std::set<size_t> selections,
size_t num_entered_characters,
optimization_guide::proto::UserFeedback user_feedback,
optimization_guide::proto::UiSurface ui_surface) {
// Exit early if logging is not enabled.
if (!GetFeatureParameters().send_quality_log ||
!embedder_metadata_.IsValid()) {
return;
}
// V1 HistoryQueryLoggingData:
{
// Prepare log entry and record a histogram for whether it's prepared.
QualityLogEntry log_entry = PrepareQualityLogEntry();
base::UmaHistogramBoolean("History.Embeddings.Quality.LogEntryPrepared",
!!log_entry);
if (!log_entry) {
return;
}
optimization_guide::proto::LogAiDataRequest* request =
log_entry->log_ai_data_request();
if (!request) {
return;
}
request->mutable_model_execution_info()->set_execution_id(base::StrCat({
"history-search-embeddings:",
base::Uuid::GenerateRandomV4().AsLowercaseString(),
}));
optimization_guide::proto::HistoryQueryQuality* query_quality =
request->mutable_history_query()->mutable_quality();
if (!query_quality) {
return;
}
// Fill the quality proto with data.
size_t num_days =
result.time_range_start.has_value()
? (base::Time::Now() - result.time_range_start.value()).InDays() + 1
: 0;
query_quality->set_session_id(result.session_id);
query_quality->set_user_feedback(user_feedback);
query_quality->set_embedding_model_version(
embedder_metadata_.model_version);
query_quality->set_query(result.query);
query_quality->set_num_days(num_days);
query_quality->set_num_entered_characters(num_entered_characters);
query_quality->set_ui_surface(ui_surface);
bool any_document_clicked = false;
for (size_t row_index = 0; row_index < result.scored_url_rows.size();
++row_index) {
const ScoredUrlRow& scored_url_row = result.scored_url_rows[row_index];
optimization_guide::proto::DocumentShown* document_shown =
query_quality->add_top_documents_shown();
document_shown->set_url(scored_url_row.row.url().spec());
document_shown->set_was_clicked(selections.contains(row_index));
any_document_clicked |= document_shown->was_clicked();
if (!scored_url_row.scores.empty()) {
document_shown->set_best_embedding_score(
std::ranges::max(scored_url_row.scores));
}
document_shown->set_total_document_score(scored_url_row.scored_url.score);
// Log the top passages that may be used as context for the Answerer.
for (size_t passage_index : scored_url_row.GetBestScoreIndices(
0, GetFeatureParameters().context_passages_minimum_word_count)) {
optimization_guide::proto::PassageData* passage_data =
document_shown->add_passages();
passage_data->set_text(
scored_url_row.passages_embeddings.passages.passages(
passage_index));
passage_data->set_score(scored_url_row.scores[passage_index]);
const std::vector<float>& embedding =
scored_url_row.passages_embeddings.embeddings[passage_index]
.GetData();
passage_data->mutable_embedding()
->mutable_floats()
->mutable_values()
->Add(embedding.begin(), embedding.end());
}
}
if (result.scored_url_rows.size() > 0) {
query_quality->set_final_model_status(
any_document_clicked ? optimization_guide::proto::FinalModelStatus::
FINAL_MODEL_STATUS_SUCCESS
: optimization_guide::proto::FinalModelStatus::
FINAL_MODEL_STATUS_FAILURE);
}
// The data is sent when `log_entry` destructs.
// `ModelQualityLogEntry::Drop(std::move(log_entry))` would be required to
// avoid logging if `log_entry` escapes the service, but it only exists
// within this method so we log proactively by destructing it here.
}
// V2 HistoryAnswerLoggingData:
if (GetFeatureParameters().send_quality_log_v2) {
if (result.answerer_result.log_entry) {
optimization_guide::proto::HistoryAnswerQuality* answer_quality =
result.answerer_result.log_entry->log_ai_data_request()
->mutable_history_answer()
->mutable_quality();
if (answer_quality) {
answer_quality->set_session_id(result.session_id);
answer_quality->set_url(result.answerer_result.url);
// Take the entry out from the SearchResult so that it will log on
// destruction at the end of this block.
std::unique_ptr<optimization_guide::ModelQualityLogEntry> log_entry =
std::move(result.answerer_result.log_entry);
}
}
}
}
void HistoryEmbeddingsService::Shutdown() {
query_id_weak_ptr_factory_.InvalidateWeakPtrs();
weak_ptr_factory_.InvalidateWeakPtrs();
storage_.Reset();
}
void HistoryEmbeddingsService::OnHistoryDeletions(
history::HistoryService* history_service,
const history::DeletionInfo& deletion_info) {
storage_.AsyncCall(&Storage::HandleHistoryDeletions)
.WithArgs(deletion_info.IsAllHistory(), deletion_info.deleted_rows(),
deletion_info.deleted_visit_ids());
}
void HistoryEmbeddingsService::EmbedderMetadataUpdated(
passage_embeddings::EmbedderMetadata metadata) {
if (embedder_metadata_.IsValid()) {
// TODO(crbug.com/396684224): Handle runtime model changes. For now the
// code expects them to remain constant and only processes metadata once.
return;
}
embedder_metadata_ = metadata;
os_crypt_async_->GetInstance(
base::BindOnce(&HistoryEmbeddingsService::OnOsCryptAsyncReady,
weak_ptr_factory_.GetWeakPtr()));
}
bool HistoryEmbeddingsService::IsAnswererUseAllowed() const {
return true;
}
void HistoryEmbeddingsService::GetUrlData(history::URLID url_id,
UrlDataCallback callback) const {
storage_.AsyncCall(&Storage::GetUrlData)
.WithArgs(url_id)
.Then(std::move(callback));
}
void HistoryEmbeddingsService::GetUrlDataInTimeRange(
base::Time from_time,
base::Time to_time,
size_t limit,
size_t offset,
base::OnceCallback<void(std::vector<UrlData>)> callback) const {
storage_.AsyncCall(&Storage::GetUrlDataInTimeRange)
.WithArgs(from_time, to_time, limit, offset)
.Then(std::move(callback));
}
void HistoryEmbeddingsService::DeleteDataForTesting(
bool delete_passages,
bool delete_embeddings,
base::OnceClosure callback) {
storage_
.AsyncCall(&history_embeddings::HistoryEmbeddingsService::Storage::
DeleteDataForTesting)
.WithArgs(delete_passages, delete_embeddings)
.Then(std::move(callback));
}
void HistoryEmbeddingsService::SetPassagesStoredCallbackForTesting(
PassagesStoredCallback callback) {
passages_stored_callback_for_tests_ = std::move(callback);
}
HistoryEmbeddingsService::Storage::Storage(const base::FilePath& storage_dir,
bool erase_non_ascii_characters,
bool delete_embeddings)
: sql_database(storage_dir, erase_non_ascii_characters, delete_embeddings) {
}
void HistoryEmbeddingsService::Storage::SetEmbedderMetadata(
passage_embeddings::EmbedderMetadata metadata,
os_crypt_async::Encryptor encryptor) {
sql_database.SetEmbedderMetadata(metadata, std::move(encryptor));
}
void HistoryEmbeddingsService::Storage::ProcessAndStorePassages(
UrlData url_data) {
CHECK_EQ(url_data.passages.passages_size(),
static_cast<int>(url_data.embeddings.size()));
for (int i = 0; i < url_data.passages.passages_size(); i++) {
url_data.embeddings[i].SetPassageWordCount(
CountWords(url_data.passages.passages(i)));
}
// Store all embeddings and passages.
vector_database.AddUrlData(std::move(url_data));
vector_database.SaveTo(&sql_database);
}
std::vector<ScoredUrlRow> HistoryEmbeddingsService::Storage::Search(
base::WeakPtr<std::atomic<size_t>> weak_latest_query_id,
size_t query_id,
SearchParams search_params,
passage_embeddings::Embedding query_embedding,
std::optional<base::Time> time_range_start,
size_t count) {
base::ElapsedTimer timer;
SearchInfo search_info = sql_database.FindNearest(
time_range_start, count, search_params, query_embedding,
base::BindRepeating(
[](base::WeakPtr<std::atomic<size_t>> weak_latest_query_id,
size_t query_id) {
// If the service shut down or started a new query, this one is no
// longer needed. Signal to exit early. Best result so far will be
// returned.
return !weak_latest_query_id || *weak_latest_query_id != query_id;
},
std::move(weak_latest_query_id), query_id));
const base::TimeDelta elapsed = timer.Elapsed();
base::UmaHistogramTimes("History.Embeddings.Search.Duration", elapsed);
base::UmaHistogramCounts1M("History.Embeddings.Search.UrlCount",
search_info.searched_url_count);
base::UmaHistogramCounts10M("History.Embeddings.Search.EmbeddingCount",
search_info.searched_embedding_count);
base::UmaHistogramCounts10M(
"History.Embeddings.Search.SkippedNonAsciiPassageCount",
search_info.skipped_nonascii_passage_count);
base::UmaHistogramCounts10M(
"History.Embeddings.Search.ModifiedNonAsciiPassageCount",
search_info.modified_nonascii_passage_count);
base::UmaHistogramBoolean("History.Embeddings.Search.Completed",
search_info.completed);
base::UmaHistogramTimes("History.Embeddings.Search.TotalSearchTime",
search_info.total_search_time);
base::UmaHistogramTimes("History.Embeddings.Search.ScoringTime",
search_info.scoring_time);
base::UmaHistogramTimes("History.Embeddings.Search.PassageScanningTime",
search_info.passage_scanning_time);
VLOG(1) << "History.Embeddings.Search.Duration (ms): "
<< elapsed.InMilliseconds()
<< " ; .UrlCount: " << search_info.searched_url_count
<< " ; .EmbeddingCount: " << search_info.searched_embedding_count
<< " ; .SkippedNonAsciiPassageCount: "
<< search_info.skipped_nonascii_passage_count
<< " ; .Completed: " << search_info.completed;
// Populate source passages and embeddings to fill out more complete
// ScoredUrlRow results. Total score top results are first, followed by
// word match score top results.
std::vector<ScoredUrlRow> scored_url_rows;
scored_url_rows.reserve(search_info.scored_urls.size() +
search_info.word_match_scored_urls.size());
auto expand = [&](ScoredUrl& scored_url) {
ScoredUrlRow& scored_url_row =
scored_url_rows.emplace_back(std::move(scored_url));
// Since this data was just found, it must exist in the database, so the
// returned optional must have its value.
scored_url_row.passages_embeddings =
sql_database.GetUrlData(scored_url_row.scored_url.url_id).value();
// Save scores for logging.
size_t n = scored_url_row.passages_embeddings.embeddings.size();
scored_url_row.scores.reserve(n);
for (size_t i = 0; i < n; i++) {
SearchInfo discard_recount;
scored_url_row.scores.push_back(query_embedding.ScoreWith(
scored_url_row.passages_embeddings.embeddings[i]));
}
};
for (ScoredUrl& scored_url : search_info.scored_urls) {
expand(scored_url);
}
for (ScoredUrl& scored_url : search_info.word_match_scored_urls) {
if (!std::ranges::any_of(scored_url_rows, [&](const ScoredUrlRow& row) {
return row.scored_url.url_id == scored_url.url_id;
})) {
expand(scored_url);
}
}
for (const auto& sr : scored_url_rows) {
VLOG(3) << "URL: " << sr.row.url().spec()
<< " score: " << sr.scored_url.score
<< " ; word_match_score: " << sr.scored_url.word_match_score;
VLOG(3) << "# passages: " << sr.passages_embeddings.passages.passages_size()
<< " # scores: " << sr.scores.size();
for (size_t i = 0; i < sr.scores.size(); i++) {
VLOG(3) << "embedding similarity score: " << sr.scores[i];
VLOG(3) << "passage: " << sr.passages_embeddings.passages.passages(i);
}
}
return scored_url_rows;
}
void HistoryEmbeddingsService::Storage::HandleHistoryDeletions(
bool for_all_history,
history::URLRows deleted_rows,
std::set<history::VisitID> deleted_visit_ids) {
if (for_all_history) {
sql_database.DeleteAllData(true, true);
return;
}
for (history::URLRow url_row : deleted_rows) {
sql_database.DeleteDataForUrlId(url_row.id());
}
for (history::VisitID visit_id : deleted_visit_ids) {
sql_database.DeleteDataForVisitId(visit_id);
}
}
void HistoryEmbeddingsService::Storage::DeleteDataForTesting(
bool delete_passages,
bool delete_embeddings) {
sql_database.DeleteAllData(delete_passages, delete_embeddings);
}
std::vector<UrlData>
HistoryEmbeddingsService::Storage::CollectPassagesWithoutEmbeddings() {
return sql_database.GetUrlPassagesWithoutEmbeddings();
}
std::optional<UrlData> HistoryEmbeddingsService::Storage::GetUrlData(
history::URLID url_id) {
base::ScopedUmaHistogramTimer timer(
"History.Embeddings.DatabaseAsCacheAccessTime.StorageRead");
return sql_database.GetUrlData(url_id);
}
std::vector<UrlData> HistoryEmbeddingsService::Storage::GetUrlDataInTimeRange(
base::Time from_time,
base::Time to_time,
size_t limit,
size_t offset) {
return sql_database.GetUrlDataInTimeRange(from_time, to_time, limit, offset);
}
QualityLogEntry HistoryEmbeddingsService::PrepareQualityLogEntry() {
// This requires some Chrome machinery to upload the log entry, so it's
// implemented in ChromeHistoryEmbeddingsService.
return nullptr;
}
void HistoryEmbeddingsService::ComputeAndStorePassageEmbeddingsWithExistingData(
UrlData url_data,
std::vector<std::string> passages,
std::optional<base::ElapsedTimer> database_access_timer,
std::optional<UrlData> existing_url_data) {
VLOG(4) << "All " << passages.size() << " passages for url_id "
<< url_data.url_id << ":";
for (size_t i = 0; i < passages.size(); i++) {
VLOG(4) << i << ": \"" << passages[i] << '"';
}
if (database_access_timer.has_value()) {
base::UmaHistogramTimes(
"History.Embeddings.DatabaseAsCacheAccessTime.TotalWait",
database_access_timer->Elapsed());
}
// Move existing passages and associated embeddings into map for quick
// hash-based lookup instead of many string comparisons.
std::unordered_map<std::string, passage_embeddings::Embedding>
embedding_cache;
if (existing_url_data.has_value()) {
size_t passages_size = existing_url_data->passages.passages_size();
// It's possible to get passages but no embeddings if the model version
// changed and caused embeddings to be deleted, and they're not rebuilt yet.
if (passages_size == existing_url_data->embeddings.size()) {
auto passages_iter = existing_url_data->passages.passages().begin();
auto embeddings_iter = existing_url_data->embeddings.begin();
for (size_t i = 0; i < passages_size; i++) {
embedding_cache.emplace(std::move(*passages_iter),
std::move(*embeddings_iter));
passages_iter++;
embeddings_iter++;
}
}
}
// Check the map for identical passages, which can reuse stored embeddings
// instead of recomputing them with the embedder. Preserve the structure
// in `url_data` and move any passages that still need embedding to
// `noncached_passages`. The missing embeddings will be filled in
// with the computed embeddings in `OnPassagesEmbeddingsComputed()`.
std::vector<std::string> noncached_passages;
noncached_passages.reserve(passages.size());
for (std::string& passage : passages) {
if (embedding_cache.contains(passage)) {
VLOG(6) << "Cached passage: " << passage;
// Reuse the embeddings from the cache.
url_data.embeddings.emplace_back(embedding_cache[passage]);
} else {
VLOG(6) << "Noncached passage: " << passage;
// Reserve room for the embeddings to be filled in once computed.
url_data.embeddings.emplace_back(std::vector<float>{});
noncached_passages.push_back(passage);
}
url_data.passages.add_passages(std::move(passage));
}
if (passages.size() > 0) {
base::UmaHistogramPercentage(
"History.Embeddings.DatabaseCachedPassageRatio",
100 * (passages.size() - noncached_passages.size()) / passages.size());
base::UmaHistogramCounts100(
"History.Embeddings.DatabaseCachedPassageHitCount",
passages.size() - noncached_passages.size());
base::UmaHistogramCounts100(
"History.Embeddings.DatabaseCachedPassageTryCount", passages.size());
for (size_t i = 0; i < passages.size(); i++) {
base::UmaHistogramBoolean("History.Embeddings.DatabaseCacheHit",
i >= noncached_passages.size());
}
}
VLOG(4) << "All " << noncached_passages.size()
<< " noncached passages for url_id " << url_data.url_id << ":";
for (size_t i = 0; i < noncached_passages.size(); i++) {
VLOG(5) << i << ": \"" << noncached_passages[i] << '"';
}
// TODO(crbug.com/390241271): Move this inside Embedder implementations once
// they are no longer wrapped inside the SchedulingEmbedder.
if (GetFeatureParameters().erase_non_ascii_characters) {
EraseNonAsciiCharacters(noncached_passages);
}
embedder_->ComputePassagesEmbeddings(
passage_embeddings::PassagePriority::kPassive,
std::move(noncached_passages),
base::BindOnce(&HistoryEmbeddingsService::OnPassagesEmbeddingsComputed,
weak_ptr_factory_.GetWeakPtr(), std::move(url_data)));
}
void HistoryEmbeddingsService::OnPassagesEmbeddingsComputed(
UrlData url_passages,
std::vector<std::string> passages,
std::vector<passage_embeddings::Embedding> embeddings,
passage_embeddings::Embedder::TaskId task_id,
passage_embeddings::ComputeEmbeddingsStatus status) {
if (status != passage_embeddings::ComputeEmbeddingsStatus::kSuccess) {
return;
}
// Merge the new and the existing embeddings.
size_t embeddings_index = 0;
for (auto& embedding : url_passages.embeddings) {
if (embedding.Dimensions() == 0) {
embedding = embeddings[embeddings_index++];
}
}
// Make sure all the new embeddings are accounted for.
CHECK_EQ(embeddings_index, embeddings.size());
storage_.AsyncCall(&Storage::ProcessAndStorePassages)
.WithArgs(url_passages)
.Then(base::BindOnce(passages_stored_callback_for_tests_, url_passages));
}
void HistoryEmbeddingsService::OnSearchCompleted(
SearchResultCallback callback,
SearchResult result,
std::vector<ScoredUrlRow> scored_url_rows) {
std::vector<ScoredUrlRow> filtered;
filtered.reserve(scored_url_rows.size());
float score_threshold = GetScoreThreshold(embedder_metadata_);
float word_match_score_threshold =
GetFeatureParameters().search_word_match_score_threshold;
std::copy_if(std::make_move_iterator(scored_url_rows.begin()),
std::make_move_iterator(scored_url_rows.end()),
std::back_inserter(filtered),
[=](const ScoredUrlRow& scored_url_row) {
// The `score` is the total for the URL, including the
// best embedding score plus a holistic word match boost.
// The `word_match_score` is just the boost part, and a
// result item could be included after primary results
// if it exceeds a different threshold for word match.
return scored_url_row.scored_url.score > score_threshold ||
scored_url_row.scored_url.word_match_score >
word_match_score_threshold;
});
base::UmaHistogramCounts100("History.Embeddings.NumUrlsDiscardedForLowScore",
scored_url_rows.size() - filtered.size());
auto is_kept_by_word_match = [=](const ScoredUrlRow& scored_url_row) {
return !(scored_url_row.scored_url.score > score_threshold);
};
size_t num_added_by_word_match =
std::ranges::count_if(filtered, is_kept_by_word_match);
base::UmaHistogramCounts100("History.Embeddings.NumUrlsAddedByWordMatch",
num_added_by_word_match);
// Trim final result set to not exceed requested `count`.
while (filtered.size() > result.count) {
filtered.pop_back();
}
size_t num_kept_by_word_match =
std::ranges::count_if(filtered, is_kept_by_word_match);
base::UmaHistogramCounts100("History.Embeddings.NumUrlsKeptByWordMatch",
num_kept_by_word_match);
// The score used for filtering is the scored_url.score but this can exceed
// the maximum embedding score due to word match boosting across all passages.
// Detect and log cases that would have been filtered if not for text search.
for (const ScoredUrlRow& row : filtered) {
float best_embedding_score = std::ranges::max(row.scores);
bool sufficient = best_embedding_score > score_threshold;
base::UmaHistogramBoolean("History.Embeddings.EmbeddingScoreSufficient",
sufficient);
}
VLOG(3) << "Search found " << scored_url_rows.size() << " results, leaving "
<< filtered.size() << " after all filtering, with "
<< num_added_by_word_match << " added by word match and "
<< num_kept_by_word_match << " kept by word match after capping";
DeterminePassageVisibility(std::move(callback), std::move(result),
std::move(filtered));
}
void HistoryEmbeddingsService::DeterminePassageVisibility(
SearchResultCallback callback,
SearchResult result,
std::vector<ScoredUrlRow> scored_url_rows) {
bool is_visibility_model_available =
page_content_annotations_service_ &&
page_content_annotations_service_->GetModelInfoForType(
page_content_annotations::AnnotationType::kContentVisibility);
base::UmaHistogramCounts100("History.Embeddings.NumUrlsMatched",
scored_url_rows.size());
base::UmaHistogramBoolean(
"History.Embeddings.VisibilityModelAvailableAtQuery",
is_visibility_model_available);
if (!is_visibility_model_available || scored_url_rows.empty()) {
OnPassageVisibilityCalculated(std::move(callback), std::move(result),
std::move(scored_url_rows), {});
return;
}
std::vector<std::string> inputs;
inputs.reserve(scored_url_rows.size());
for (const ScoredUrlRow& url_row : scored_url_rows) {
inputs.emplace_back(url_row.GetBestPassage());
}
page_content_annotations_service_->BatchAnnotate(
base::BindOnce(&HistoryEmbeddingsService::OnPassageVisibilityCalculated,
weak_ptr_factory_.GetWeakPtr(), std::move(callback),
std::move(result), std::move(scored_url_rows)),
std::move(inputs),
page_content_annotations::AnnotationType::kContentVisibility);
}
void HistoryEmbeddingsService::OnPassageVisibilityCalculated(
SearchResultCallback callback,
SearchResult result,
std::vector<ScoredUrlRow> scored_url_rows,
const std::vector<page_content_annotations::BatchAnnotationResult>&
annotation_results) {
if (annotation_results.empty()) {
scored_url_rows.clear();
} else {
CHECK_EQ(scored_url_rows.size(), annotation_results.size());
// Filter for scored URLs that are ok to be shown to the user.
auto url_rows_it = scored_url_rows.begin();
for (const page_content_annotations::BatchAnnotationResult&
annotation_result : annotation_results) {
// Note, if threshold is configured at exactly zero then it's
// intentionally allowing everything through.
if (annotation_result.visibility_score().value_or(0.0) <
GetFeatureParameters().content_visibility_threshold) {
url_rows_it = scored_url_rows.erase(url_rows_it);
} else {
++url_rows_it;
}
}
}
base::UmaHistogramCounts100("History.Embeddings.NumMatchedUrlsVisible",
scored_url_rows.size());
if (scored_url_rows.empty()) {
std::move(callback).Run(std::move(result));
return;
}
history_service_->ScheduleDBTaskForUI(base::BindOnce(
&FinishSearchResultWithHistory,
base::SequencedTaskRunner::GetCurrentDefault(),
base::BindRepeating(&HistoryEmbeddingsService::OnPrimarySearchResultReady,
weak_ptr_factory_.GetWeakPtr(), std::move(callback)),
std::move(result), std::move(scored_url_rows)));
}
void HistoryEmbeddingsService::OnPrimarySearchResultReady(
SearchResultCallback callback,
SearchResult result) {
callback.Run(result.Clone());
// Do no intent classification or answering if `Search` caller requested
// to `skip_answering`.
if (result.search_params.skip_answering) {
return;
}
// TODO(b/369446266): Intent classification can execute in parallel with
// initial query embedding computation and search. This doesn't make
// much difference when the mock is used but could save time when the
// real ML intent classifier is working.
if (answerer_ && intent_classifier_ && IsAnswererUseAllowed()) {
std::string query = result.query;
VLOG(3) << "ComputeQueryIntent for '" << query << "'";
intent_classifier_->ComputeQueryIntent(
std::move(query),
base::BindOnce(&HistoryEmbeddingsService::OnQueryIntentComputed,
weak_ptr_factory_.GetWeakPtr(), callback,
std::move(result)));
} else {
// Intent classification is explicitly disabled; bypass to answerer.
OnQueryIntentComputed(callback, std::move(result),
ComputeIntentStatus::SUCCESS,
/*query_is_answerable=*/true);
}
}
void HistoryEmbeddingsService::OnQueryIntentComputed(
SearchResultCallback callback,
SearchResult result,
ComputeIntentStatus status,
bool query_is_answerable) {
const bool answerable = status == ComputeIntentStatus::SUCCESS &&
query_is_answerable && answerer_ &&
IsAnswererUseAllowed();
VLOG(3) << "OnQueryIntentComputed for '" << result.query << "' ("
<< query_is_answerable << "," << answerable << ")";
VLOG(3) << "ComputeIntentStatus: " << static_cast<int>(status);
base::UmaHistogramBoolean("History.Embeddings.QueryAnswerable", answerable);
if (!answerable) {
return;
}
// Send a result indicating that an answer generation is being attempted so
// that the UI can show a loading state.
SearchResult loadingResult = result.Clone();
loadingResult.answerer_result =
AnswererResult(ComputeAnswerStatus::kLoading, result.query,
optimization_guide::proto::Answer());
callback.Run(std::move(loadingResult));
Answerer::Context context(result.session_id);
for (size_t url_index = 0;
url_index <
std::min(result.scored_url_rows.size(),
static_cast<size_t>(
GetFeatureParameters().max_answerer_context_url_count));
url_index++) {
const ScoredUrlRow& scored_url_row = result.scored_url_rows[url_index];
std::vector<size_t> best_indices = scored_url_row.GetBestScoreIndices(
0, GetFeatureParameters().context_passages_minimum_word_count);
std::vector<std::string>& best_passages =
context.url_passages_map[scored_url_row.row.url().spec()];
best_passages.reserve(best_indices.size());
for (size_t index : best_indices) {
best_passages.push_back(
scored_url_row.passages_embeddings.passages.passages(index));
}
}
std::string query = result.query;
VLOG(3) << "ComputeAnswer for '" << query << "'";
answerer_->ComputeAnswer(
std::move(query), std::move(context),
base::BindOnce(&HistoryEmbeddingsService::OnAnswerComputed,
weak_ptr_factory_.GetWeakPtr(), base::Time::Now(),
callback, std::move(result)));
}
void HistoryEmbeddingsService::OnAnswerComputed(
base::Time start_time,
SearchResultCallback callback,
SearchResult search_result,
AnswererResult answerer_result) {
base::TimeDelta waited = base::Time::Now() - start_time;
search_result.answerer_result = std::move(answerer_result);
VLOG(3) << "Query '" << search_result.answerer_result.query
<< "' computed answer '" << search_result.AnswerText() << "'";
VLOG(3) << "ComputeAnswerStatus: "
<< static_cast<int>(search_result.answerer_result.status) << " ("
<< waited.InMilliseconds() << " ms)";
base::UmaHistogramEnumeration("History.Embeddings.ComputeAnswerStatus",
answerer_result.status);
const std::string compute_answer_time_histogram_name =
"History.Embeddings.ComputeAnswerTime";
base::UmaHistogramTimes(compute_answer_time_histogram_name, waited);
switch (answerer_result.status) {
case ComputeAnswerStatus::kLoading:
base::UmaHistogramTimes(compute_answer_time_histogram_name + ".Loading",
waited);
break;
case ComputeAnswerStatus::kSuccess:
base::UmaHistogramTimes(compute_answer_time_histogram_name + ".Success",
waited);
break;
case ComputeAnswerStatus::kUnanswerable:
base::UmaHistogramTimes(
compute_answer_time_histogram_name + ".Unanswerable", waited);
break;
case ComputeAnswerStatus::kModelUnavailable:
base::UmaHistogramTimes(
compute_answer_time_histogram_name + ".ModelUnavailable", waited);
break;
case ComputeAnswerStatus::kExecutionFailure:
base::UmaHistogramTimes(
compute_answer_time_histogram_name + ".ExecutionFailure", waited);
break;
case ComputeAnswerStatus::kExecutionCancelled:
base::UmaHistogramTimes(
compute_answer_time_histogram_name + ".ExecutionCancelled", waited);
break;
case ComputeAnswerStatus::kFiltered:
base::UmaHistogramTimes(compute_answer_time_histogram_name + ".Filtered",
waited);
break;
case ComputeAnswerStatus::kUnspecified:
break;
}
callback.Run(std::move(search_result));
}
void HistoryEmbeddingsService::RebuildAbsentEmbeddings(
std::vector<UrlData> all_url_passages) {
VLOG(3) << "Rebuilding embeddings for " << all_url_passages.size() << " rows";
for (UrlData& url_passages : all_url_passages) {
std::vector<std::string> passages(url_passages.passages.passages().begin(),
url_passages.passages.passages().end());
VLOG(3) << "Rebuild scheduled for url_id " << url_passages.url_id
<< " with " << passages.size() << " passages";
// Reserve room for the embeddings to be filled in once computed.
url_passages.embeddings = std::vector<passage_embeddings::Embedding>(
url_passages.passages.passages_size(),
passage_embeddings::Embedding(std::vector<float>{}));
// TODO(crbug.com/390241271): Move this inside Embedder implementations once
// they are no longer wrapped inside the SchedulingEmbedder.
if (GetFeatureParameters().erase_non_ascii_characters) {
EraseNonAsciiCharacters(passages);
}
embedder_->ComputePassagesEmbeddings(
passage_embeddings::PassagePriority::kLatent, std::move(passages),
base::BindOnce(&HistoryEmbeddingsService::OnPassagesEmbeddingsComputed,
weak_ptr_factory_.GetWeakPtr(),
std::move(url_passages)));
}
}
bool HistoryEmbeddingsService::QueryIsFiltered(
const std::string& raw_query,
SearchParams& search_params) const {
if (!base::IsStringASCII(raw_query)) {
RecordQueryFiltered(QueryFiltered::FILTERED_NOT_ASCII);
return true;
}
const std::unordered_set<uint32_t>& stop_words_hashes =
SearchStringsUpdateListener::GetInstance()->stop_words_hashes();
size_t min_term_length = GetFeatureParameters().word_match_min_term_length;
std::vector<std::string> query_terms =
SplitQueryToTerms(stop_words_hashes, raw_query, min_term_length);
const std::unordered_set<uint32_t>& filter_words_hashes =
SearchStringsUpdateListener::GetInstance()->filter_words_hashes();
if (std::ranges::any_of(query_terms, [&](std::string_view query_term) {
uint32_t hash = HashString(query_term);
return filter_words_hashes.contains(hash);
})) {
RecordQueryFiltered(QueryFiltered::FILTERED_ONE_WORD_HASH_MATCH);
return true;
}
for (size_t i = 1; i < query_terms.size(); i++) {
std::string two_terms =
base::StrCat({query_terms[i - 1], " ", query_terms[i]});
uint32_t hash = HashString(two_terms);
if (filter_words_hashes.contains(hash)) {
RecordQueryFiltered(QueryFiltered::FILTERED_TWO_WORD_HASH_MATCH);
return true;
}
}
RecordQueryFiltered(QueryFiltered::NOT_FILTERED);
search_params.query_terms = std::move(query_terms);
return false;
}
} // namespace history_embeddings
|