1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/history_embeddings/ml_answerer.h"
#include <algorithm>
#include "base/barrier_callback.h"
#include "base/memory/scoped_refptr.h"
#include "base/strings/stringprintf.h"
#include "components/history_embeddings/history_embeddings_features.h"
#include "components/optimization_guide/core/model_quality/model_execution_logging_wrappers.h"
#include "components/optimization_guide/core/optimization_guide_model_executor.h"
#include "components/optimization_guide/core/optimization_guide_util.h"
#include "components/optimization_guide/proto/features/history_answer.pb.h"
namespace history_embeddings {
using ModelExecutionError = optimization_guide::
OptimizationGuideModelExecutionError::ModelExecutionError;
using optimization_guide::OptimizationGuideModelExecutionError;
using optimization_guide::OptimizationGuideModelStreamingExecutionResult;
using optimization_guide::SessionConfigParams;
using optimization_guide::proto::Answer;
using optimization_guide::proto::HistoryAnswerRequest;
using optimization_guide::proto::Passage;
namespace {
static constexpr std::string kPassageIdToken = "ID";
// Estimated token count of the preamble text in prompt.
static constexpr size_t kPreambleTokenBufferSize = 100u;
// Estimated token count of overhead text per passage.
static constexpr size_t kExtraTokensPerPassage = 10u;
std::string GetPassageIdStr(size_t id) {
return base::StringPrintf("%04d", static_cast<int>(id));
}
float GetMlAnswerScoreThreshold() {
return GetFeatureParameters().ml_answerer_min_score;
}
} // namespace
// Helper struct to bundle raw model input (queries/passages) with its metadata.
struct MlAnswerer::ModelInput {
// The string content of this input.
std::string text;
// Index 0 is reserved for queries, i.e. this index will be 0 iff. this input
// is a query. If the input is a passage, index will contain the index of the
// passage in the original passage vector (where lower index means higher
// relevance), plus 1 to offset for query.
size_t index;
// The size of `text` in tokens.
uint32_t token_count;
};
// Manages sessions for generating an answer for a given query and multiple
// URLs.
class MlAnswerer::SessionManager {
public:
using SessionScoreType = std::tuple<int, std::optional<float>>;
SessionManager(std::string query,
Context context,
ComputeAnswerCallback callback,
base::WeakPtr<ModelQualityLogsUploaderService> logs_uploader)
: query_(std::move(query)),
context_(std::move(context)),
callback_(std::move(callback)),
origin_task_runner_(base::SequencedTaskRunner::GetCurrentDefault()),
logs_uploader_(logs_uploader),
weak_ptr_factory_(this) {}
~SessionManager() {
// Explicitly invalidate weak pointers to prevent callbacks that may be
// triggered by the destructor logic.
weak_ptr_factory_.InvalidateWeakPtrs();
// Run the existing callback if not called yet with canceled status.
if (!callback_.is_null()) {
FinishAndResetSessions(AnswererResult(
ComputeAnswerStatus::kExecutionCancelled, query_, Answer()));
}
}
// Adds a session that contains query and passage context.
// It exists until this manager resets or gets destroyed.
void AddSession(
std::unique_ptr<OptimizationGuideModelExecutor::Session> session,
std::string url) {
sessions_.push_back(std::move(session));
urls_.push_back(url);
}
// Runs speculative decoding by first getting scores for each URL candidate
// and continuing decoding with only the highest scored session.
void RunSpeculativeDecoding() {
const size_t num_sessions = GetNumberOfSessions();
base::OnceCallback<void(const std::vector<SessionScoreType>&)> cb =
base::BindOnce(&SessionManager::SortAndDecode,
weak_ptr_factory_.GetWeakPtr());
const auto barrier_cb =
base::BarrierCallback<SessionScoreType>(num_sessions, std::move(cb));
for (size_t s_index = 0; s_index < num_sessions; s_index++) {
VLOG(3) << "Running Score for session " << s_index;
sessions_[s_index]->Score(
kPassageIdToken, base::BindOnce(
[](size_t index, std::optional<float> score) {
VLOG(3) << "Score complete for " << index;
return std::make_tuple(index, score);
},
s_index)
.Then(barrier_cb));
}
}
size_t GetNumberOfSessions() { return sessions_.size(); }
base::WeakPtr<MlAnswerer::SessionManager> GetWeakPtr() {
return weak_ptr_factory_.GetWeakPtr();
}
// Runs callback with result.
void FinishCallback(AnswererResult answer_result) {
CHECK(!callback_.is_null());
origin_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(std::move(callback_), std::move(answer_result)));
}
// Finishes and cleans up sessions.
void FinishAndResetSessions(AnswererResult answer_result) {
FinishCallback(std::move(answer_result));
// Destroy all existing sessions.
VLOG(3) << "Sessions cleared.";
sessions_.clear();
urls_.clear();
}
// Called when all sessions are started and added.
void OnSessionsStarted(std::vector<int> args) { RunSpeculativeDecoding(); }
// Called when token counts of the query and all passages of a session are
// computed.
void OnTokenCountRetrieved(std::unique_ptr<Session> session,
const std::string url,
base::OnceCallback<void(int)> session_added_cb,
std::vector<ModelInput> inputs) {
HistoryAnswerRequest request;
int token_limit = session->GetTokenLimits().min_context_tokens;
// Reserve space for preamble text.
int token_count = kPreambleTokenBufferSize;
// Sort the inputs according to their indices in the original vector, so
// we prioritize passages that are more relevant.
std::ranges::sort(
inputs.begin(), inputs.end(),
[](ModelInput& i1, ModelInput& i2) { return i1.index < i2.index; });
// Add the query to the request. The query will always have index 0.
token_count += inputs[0].token_count;
request.set_query(inputs[0].text);
// Add as many passages as the input window can fit.
for (size_t i = 1; i < inputs.size(); ++i) {
token_count += (inputs[i].token_count + kExtraTokensPerPassage);
if (token_count > token_limit) {
break;
}
auto* passage = request.add_passages();
passage->set_text(inputs[i].text);
passage->set_passage_id(GetPassageIdStr(i));
}
VLOG(3) << "Running AddContext for query: `" << request.query() << "`";
session->AddContext(request);
AddSession(std::move(session), url);
std::move(session_added_cb).Run(1);
}
private:
// Callback to be repeatedly called during streaming execution.
void StreamingExecutionCallback(
size_t session_index,
optimization_guide::OptimizationGuideModelStreamingExecutionResult result,
std::unique_ptr<optimization_guide::proto::HistoryAnswerLoggingData>
logging_data) {
auto log_entry = std::make_unique<optimization_guide::ModelQualityLogEntry>(
logs_uploader_);
log_entry->log_ai_data_request()->set_allocated_history_answer(
logging_data.release());
if (!result.response.has_value()) {
ComputeAnswerStatus status = ComputeAnswerStatus::kExecutionFailure;
auto error = result.response.error().error();
if (error == ModelExecutionError::kFiltered) {
status = ComputeAnswerStatus::kFiltered;
}
FinishCallback(AnswererResult(status, query_, Answer(),
std::move(log_entry), "", {}));
} else if (result.response->is_complete) {
auto response = optimization_guide::ParsedAnyMetadata<
optimization_guide::proto::HistoryAnswerResponse>(
std::move(result.response).value().response);
AnswererResult answerer_result(ComputeAnswerStatus::kSuccess, query_,
response->answer(), std::move(log_entry),
urls_[session_index], {});
answerer_result.PopulateScrollToTextFragment(
context_.url_passages_map[answerer_result.url]);
FinishCallback(std::move(answerer_result));
}
}
// Decodes with the highest scored session.
void SortAndDecode(const std::vector<SessionScoreType>& session_scores) {
size_t max_index = session_scores.size();
float max_score = 0.0;
for (size_t i = 0; i < session_scores.size(); i++) {
const std::optional<float> score = std::get<1>(session_scores[i]);
if (score.has_value()) {
VLOG(3) << "Session: " << std::get<0>(session_scores[i])
<< " Score: " << *score;
VLOG(3) << "URL: " << urls_[std::get<0>(session_scores[i])];
if (*score > max_score) {
max_score = *score;
max_index = i;
}
}
}
if (max_index == session_scores.size()) {
FinishAndResetSessions(AnswererResult{
ComputeAnswerStatus::kExecutionFailure, query_, Answer()});
return;
}
// Return unanswerable status due to highest score is below the threshold.
if (max_score < GetMlAnswerScoreThreshold()) {
FinishAndResetSessions(
AnswererResult{ComputeAnswerStatus::kUnanswerable, query_, Answer()});
return;
}
// Continue decoding using the session with the highest score.
// Use a dummy request here since both passages and query are already added
// to context.
if (!sessions_.empty()) {
optimization_guide::proto::HistoryAnswerRequest request;
const size_t session_index = std::get<0>(session_scores[max_index]);
VLOG(3) << "Running ExecuteModel for session " << session_index;
optimization_guide::ExecuteModelSessionWithLogging(
sessions_[session_index].get(), request,
base::BindRepeating(&SessionManager::StreamingExecutionCallback,
weak_ptr_factory_.GetWeakPtr(), session_index));
} else {
// If sessions are already cleaned up, run callback with canceled status.
FinishAndResetSessions(AnswererResult{
ComputeAnswerStatus::kExecutionCancelled, query_, Answer()});
}
}
std::vector<std::unique_ptr<OptimizationGuideModelExecutor::Session>>
sessions_;
// URLs associated with sessions by index.
std::vector<std::string> urls_;
std::string query_;
Context context_;
ComputeAnswerCallback callback_;
const scoped_refptr<base::SequencedTaskRunner> origin_task_runner_;
base::WeakPtr<ModelQualityLogsUploaderService> logs_uploader_;
base::WeakPtrFactory<SessionManager> weak_ptr_factory_;
};
MlAnswerer::MlAnswerer(OptimizationGuideModelExecutor* model_executor,
ModelQualityLogsUploaderService* logs_uploader)
: model_executor_(model_executor) {
if (logs_uploader) {
logs_uploader_ = logs_uploader->GetWeakPtr();
}
}
MlAnswerer::~MlAnswerer() = default;
int64_t MlAnswerer::GetModelVersion() {
// This can be replaced with the real implementation.
return 0;
}
void MlAnswerer::ComputeAnswer(std::string query,
Context context,
ComputeAnswerCallback callback) {
CHECK(model_executor_);
// Assign a new session manager (and destroy the existing one).
session_manager_ = std::make_unique<SessionManager>(
query, context, std::move(callback), logs_uploader_);
const auto sessions_started_callback = base::BarrierCallback<int>(
context.url_passages_map.size(),
base::BindOnce(&MlAnswerer::SessionManager::OnSessionsStarted,
session_manager_->GetWeakPtr()));
const SessionConfigParams session_config{
.execution_mode = SessionConfigParams::ExecutionMode::kOnDeviceOnly};
// Start a session for each URL.
for (const auto& url_and_passages : context.url_passages_map) {
std::unique_ptr<Session> session = model_executor_->StartSession(
optimization_guide::ModelBasedCapabilityKey::kHistorySearch,
session_config);
if (session == nullptr) {
session_manager_->FinishAndResetSessions(AnswererResult(
ComputeAnswerStatus::kModelUnavailable, query, Answer()));
return;
}
StartAndAddSession(query, url_and_passages.first, url_and_passages.second,
std::move(session), sessions_started_callback);
}
}
void MlAnswerer::StartAndAddSession(
const std::string& query,
const std::string& url,
const std::vector<std::string>& passages,
std::unique_ptr<Session> session,
base::OnceCallback<void(int)> session_started) {
Session* raw_session = session.get();
const auto token_count_callback = base::BarrierCallback<ModelInput>(
passages.size() + 1, // We need token count for passages + query.
base::BindOnce(&MlAnswerer::SessionManager::OnTokenCountRetrieved,
session_manager_->GetWeakPtr(), std::move(session), url,
std::move(session_started)));
const auto make_model_input = [](std::string text, size_t index,
std::optional<uint32_t> token_count) {
VLOG(3) << "Created model input for " << index;
return ModelInput{text, index, token_count.value_or(0)};
};
// Get token count for query, always assign index 0 to query to make a
// ModelInput.
raw_session->GetSizeInTokens(
query,
base::BindOnce(make_model_input, query, 0).Then(token_count_callback));
// Get token count for passages, and assign their index + 1 to make
// ModelInput, in order to reserve index 0 for query.
VLOG(3) << "Running GetSizeInTokens for " << passages.size() << " passages..";
for (size_t i = 0; i < passages.size(); ++i) {
raw_session->GetSizeInTokens(
passages[i], base::BindOnce(make_model_input, passages[i], i + 1)
.Then(token_count_callback));
}
}
} // namespace history_embeddings
|