1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/history_embeddings/vector_database.h"
#include <algorithm>
#include <queue>
#include "base/strings/string_split.h"
#include "base/strings/string_tokenizer.h"
#include "base/strings/string_util.h"
#include "base/timer/elapsed_timer.h"
#include "components/history_embeddings/history_embeddings_features.h"
#include "third_party/farmhash/src/src/farmhash.h"
namespace history_embeddings {
uint32_t HashString(std::string_view str) {
return util::Fingerprint32(str);
}
// Standard normalized magnitude for all embeddings.
constexpr float kUnitLength = 1.0f;
// Close enough to be considered near zero.
constexpr float kEpsilon = 0.01f;
// These delimiters separate queries and passages into tokens.
constexpr char kTokenDelimiters[] = " .,;";
namespace {
// Reduces and returns `term_view` with common characters trimmed from
// start and end.
inline std::string_view TrimTermView(std::string_view term_view) {
return base::TrimString(term_view, ".?!,:;-()[]{}<>\"'/\\*&#~@^|%$`+=",
base::TrimPositions::TRIM_ALL);
}
// Increases occurrence counts for each element of `query_terms` as they are
// found in `passage`, ranging from zero up to `max_count` inclusive. The
// `term_counts` vector is modified while counting, corresponding 1:1 with the
// terms, so its size must exactly match that of `query_terms`. Each term is
// already-folded ASCII, and `passage` is pure ASCII, so it can be folded
// efficiently during search. Note: This can be simplified to gain performance
// boost if we do text cleaning and folding of passages in advance.
void CountTermsInPassage(std::vector<size_t>& term_counts,
const std::vector<std::string>& query_terms,
std::string_view passage,
const size_t max_count) {
DCHECK_EQ(term_counts.size(), query_terms.size());
DCHECK(base::IsStringASCII(passage));
DCHECK(std::ranges::all_of(
query_terms, [](std::string_view term) { return !term.empty(); }));
DCHECK(std::ranges::all_of(query_terms, [](std::string_view term) {
return base::IsStringASCII(term);
}));
DCHECK(std::ranges::all_of(query_terms, [](std::string_view term) {
return base::ToLowerASCII(term) == term;
}));
base::StringViewTokenizer tokenizer(passage, kTokenDelimiters);
while (tokenizer.GetNext()) {
const std::string_view token = TrimTermView(tokenizer.token());
for (size_t term_index = 0; term_index < query_terms.size(); term_index++) {
if (term_counts[term_index] >= max_count) {
continue;
}
const std::string_view query_term = query_terms[term_index];
if (query_term.size() != token.size()) {
continue;
}
size_t char_index;
for (char_index = 0; char_index < token.size(); char_index++) {
if (query_term[char_index] != base::ToLowerASCII(token[char_index])) {
break;
}
}
if (char_index == token.size()) {
term_counts[term_index]++;
}
}
}
}
} // namespace
////////////////////////////////////////////////////////////////////////////////
ScoredUrl::ScoredUrl(history::URLID url_id,
history::VisitID visit_id,
base::Time visit_time,
float score,
float word_match_score)
: url_id(url_id),
visit_id(visit_id),
visit_time(visit_time),
score(score),
word_match_score(word_match_score) {}
ScoredUrl::~ScoredUrl() = default;
ScoredUrl::ScoredUrl(ScoredUrl&&) = default;
ScoredUrl& ScoredUrl::operator=(ScoredUrl&&) = default;
ScoredUrl::ScoredUrl(const ScoredUrl&) = default;
ScoredUrl& ScoredUrl::operator=(const ScoredUrl&) = default;
////////////////////////////////////////////////////////////////////////////////
SearchParams::SearchParams() = default;
SearchParams::SearchParams(const SearchParams&) = default;
SearchParams::SearchParams(SearchParams&&) = default;
SearchParams::~SearchParams() = default;
SearchParams& SearchParams::operator=(const SearchParams&) = default;
////////////////////////////////////////////////////////////////////////////////
SearchInfo::SearchInfo() = default;
SearchInfo::SearchInfo(SearchInfo&&) = default;
SearchInfo::~SearchInfo() = default;
////////////////////////////////////////////////////////////////////////////////
UrlData::UrlData(history::URLID url_id,
history::VisitID visit_id,
base::Time visit_time)
: url_id(url_id), visit_id(visit_id), visit_time(visit_time) {}
UrlData::UrlData(const UrlData&) = default;
UrlData::UrlData(UrlData&&) = default;
UrlData& UrlData::operator=(const UrlData&) = default;
UrlData& UrlData::operator=(UrlData&&) = default;
UrlData::~UrlData() = default;
bool UrlData::operator==(const UrlData& other) const {
if (other.url_id == url_id && other.visit_id == visit_id &&
other.visit_time == visit_time && embeddings == other.embeddings) {
std::string a, b;
if (other.passages.SerializeToString(&a) &&
passages.SerializeToString(&b)) {
return a == b;
}
}
return false;
}
UrlScore UrlData::BestScoreWith(
SearchInfo& search_info,
const SearchParams& search_params,
const passage_embeddings::Embedding& query_embedding,
size_t min_passage_word_count) const {
constexpr float kMaxFloat = std::numeric_limits<float>::max();
float word_match_required_score =
search_params.word_match_minimum_embedding_score;
std::vector<size_t> term_counts;
if (search_params.query_terms.size() >
search_params.word_match_max_term_count) {
// Disable word match boosting for this long query.
word_match_required_score = kMaxFloat;
} else {
// Prepare to count terms by initializing all term counts to zero.
// These will continue to increase for each passage until we have
// the total for this URL's full passage set.
term_counts.assign(search_params.query_terms.size(), 0);
}
float best = 0.0f;
std::string modified_passage;
const std::string* passage = nullptr;
for (size_t i = 0; i < embeddings.size(); i++) {
const passage_embeddings::Embedding& embedding = embeddings[i];
passage = &passages.passages(i);
// Skip non-ASCII strings to avoid scoring problems with the model.
// Note that if `erase_non_ascii_characters` is true then the embeddings
// have already be recomputed with non-ASCII characters excluded from the
// source passages, and are thus usable for search. In such cases, we can
// also modify the passage for term search.
bool skip_similarity_scoring = false;
if (!base::IsStringASCII(*passage)) {
if (search_params.erase_non_ascii_characters ||
search_params.word_match_search_non_ascii_passages) {
search_info.modified_nonascii_passage_count++;
if (word_match_required_score != kMaxFloat) {
// Copy and modify the passage to exclude the non-ASCII characters.
// Note that for efficiency this is only done when the modified
// passage will actually be used for term counting in logic below.
modified_passage = *passage;
EraseNonAsciiCharacters(modified_passage);
passage = &modified_passage;
if (!search_params.erase_non_ascii_characters) {
// The embedding for this passage is not valid, but the passage
// can still be word match text searched.
skip_similarity_scoring = true;
}
}
} else {
search_info.skipped_nonascii_passage_count++;
continue;
}
}
float score = skip_similarity_scoring || embedding.GetPassageWordCount() <
min_passage_word_count
? 0.0f
: query_embedding.ScoreWith(embedding);
if (score >= word_match_required_score || skip_similarity_scoring) {
// Since the ASCII check above processed the whole passage string, it is
// likely ready in CPU cache. Scan text again to count terms in passage.
base::ElapsedTimer timer;
CountTermsInPassage(term_counts, search_params.query_terms, *passage,
search_params.word_match_limit);
search_info.passage_scanning_time += timer.Elapsed();
}
best = std::max(best, score);
}
// Calculate total boost from term counts across all passages.
float word_match_boost = 0.0f;
if (!term_counts.empty()) {
size_t terms_found = 0;
for (size_t term_count : term_counts) {
float term_boost = search_params.word_match_score_boost_factor *
term_count / search_params.word_match_limit;
// Boost factor is applied per term such that longer queries boost more.
word_match_boost += term_boost;
if (term_count > 0) {
terms_found++;
}
}
if (static_cast<float>(terms_found) /
static_cast<float>(term_counts.size()) <
search_params.word_match_required_term_ratio) {
// Don't boost at all when not enough of the query terms were found.
word_match_boost = 0.0f;
} else {
// Normalize to avoid over-boosting long queries with many words.
word_match_boost /=
std::max<size_t>(1, search_params.query_terms.size() +
search_params.word_match_smoothing_factor);
}
}
return UrlScore{
.score = best + word_match_boost,
.word_match_score = word_match_boost,
};
}
////////////////////////////////////////////////////////////////////////////////
SearchInfo VectorDatabase::FindNearest(
std::optional<base::Time> time_range_start,
size_t count,
const SearchParams& search_params,
const passage_embeddings::Embedding& query_embedding,
base::RepeatingCallback<bool()> is_search_halted) {
if (count == 0) {
return {};
}
std::unique_ptr<UrlDataIterator> iterator =
MakeUrlDataIterator(time_range_start);
if (!iterator) {
return {};
}
// Dimensions are always equal.
CHECK_EQ(query_embedding.Dimensions(), GetEmbeddingDimensions());
// Magnitudes are also assumed equal; they are provided normalized by design.
CHECK_LT(std::abs(query_embedding.Magnitude() - kUnitLength), kEpsilon);
// Embeddings must have source passages with at least this many words in order
// to be considered during the search. Insufficient word count embeddings
// will score zero against the query_embedding.
size_t min_passage_word_count =
GetFeatureParameters().search_passage_minimum_word_count;
struct CompareScore {
bool operator()(const ScoredUrl& a, const ScoredUrl& b) {
return a.score > b.score;
}
};
struct CompareWordMatchScore {
bool operator()(const ScoredUrl& a, const ScoredUrl& b) {
return a.word_match_score > b.word_match_score;
}
};
std::priority_queue<ScoredUrl, std::vector<ScoredUrl>, CompareScore>
top_by_score;
std::priority_queue<ScoredUrl, std::vector<ScoredUrl>, CompareWordMatchScore>
top_by_word_match_score;
SearchInfo search_info;
search_info.completed = true;
base::ElapsedTimer total_timer;
while (const UrlData* url_data = iterator->Next()) {
if (is_search_halted.Run()) {
search_info.completed = false;
break;
}
search_info.searched_url_count++;
search_info.searched_embedding_count += url_data->embeddings.size();
base::ElapsedTimer scoring_timer;
UrlScore url_score = url_data->BestScoreWith(
search_info, search_params, query_embedding, min_passage_word_count);
top_by_score.emplace(url_data->url_id, url_data->visit_id,
url_data->visit_time, url_score.score,
url_score.word_match_score);
while (top_by_score.size() > count) {
top_by_score.pop();
}
top_by_word_match_score.emplace(url_data->url_id, url_data->visit_id,
url_data->visit_time, url_score.score,
url_score.word_match_score);
while (top_by_word_match_score.size() > count) {
top_by_word_match_score.pop();
}
search_info.scoring_time += scoring_timer.Elapsed();
}
search_info.total_search_time = total_timer.Elapsed();
// TODO(b/363083815): Log histograms and rework caller time histogram.
if (search_info.total_search_time.is_zero()) {
VLOG(1) << "Inner search total (μs): "
<< search_info.total_search_time.InMicroseconds();
} else {
VLOG(1) << "Inner search total (μs): "
<< search_info.total_search_time.InMicroseconds()
<< " ; scoring (μs): " << search_info.scoring_time.InMicroseconds()
<< " ; scoring %: "
<< search_info.scoring_time * 100 / search_info.total_search_time
<< " ; passage scanning (μs): "
<< search_info.passage_scanning_time.InMicroseconds()
<< " ; passage scanning %: "
<< search_info.passage_scanning_time * 100 /
search_info.total_search_time;
}
// Empty queues into vectors and return results sorted with descending scores.
while (!top_by_score.empty()) {
search_info.scored_urls.push_back(top_by_score.top());
top_by_score.pop();
}
while (!top_by_word_match_score.empty()) {
search_info.word_match_scored_urls.push_back(top_by_word_match_score.top());
top_by_word_match_score.pop();
}
std::ranges::reverse(search_info.scored_urls);
std::ranges::reverse(search_info.word_match_scored_urls);
return search_info;
}
////////////////////////////////////////////////////////////////////////////////
VectorDatabaseInMemory::VectorDatabaseInMemory() = default;
VectorDatabaseInMemory::~VectorDatabaseInMemory() = default;
void VectorDatabaseInMemory::SaveTo(VectorDatabase* database) {
for (UrlData& url_data : data_) {
database->AddUrlData(std::move(url_data));
}
data_.clear();
}
size_t VectorDatabaseInMemory::GetEmbeddingDimensions() const {
return data_.empty() ? 0 : data_[0].embeddings[0].Dimensions();
}
bool VectorDatabaseInMemory::AddUrlData(UrlData url_data) {
CHECK_EQ(static_cast<size_t>(url_data.passages.passages_size()),
url_data.embeddings.size());
if (!data_.empty()) {
for (const passage_embeddings::Embedding& embedding : url_data.embeddings) {
// All embeddings in the database must have equal dimensions.
CHECK_EQ(embedding.Dimensions(), data_[0].embeddings[0].Dimensions());
// All embeddings in the database are expected to be normalized.
CHECK_LT(std::abs(embedding.Magnitude() - kUnitLength), kEpsilon);
}
}
data_.push_back(std::move(url_data));
return true;
}
std::unique_ptr<VectorDatabase::UrlDataIterator>
VectorDatabaseInMemory::MakeUrlDataIterator(
std::optional<base::Time> time_range_start) {
struct SimpleIterator : public UrlDataIterator {
explicit SimpleIterator(const std::vector<UrlData>& source,
std::optional<base::Time> time_range_start)
: iterator_(source.cbegin()),
end_(source.cend()),
time_range_start_(time_range_start) {}
~SimpleIterator() override = default;
const UrlData* Next() override {
if (time_range_start_.has_value()) {
while (iterator_ != end_) {
if (iterator_->visit_time >= time_range_start_.value()) {
break;
}
iterator_++;
}
}
if (iterator_ == end_) {
return nullptr;
}
return &(*iterator_++);
}
std::vector<UrlData>::const_iterator iterator_;
std::vector<UrlData>::const_iterator end_;
const std::optional<base::Time> time_range_start_;
};
if (data_.empty()) {
return nullptr;
}
return std::make_unique<SimpleIterator>(data_, time_range_start);
}
std::vector<std::string> SplitQueryToTerms(
const std::unordered_set<uint32_t>& stop_words_hashes,
std::string_view raw_query,
size_t min_term_length) {
// Configuration may permit zero-length terms, but empty strings
// are never useful in search so the effective minimum then is one.
min_term_length = min_term_length > 0 ? min_term_length : 1;
std::string query = base::ToLowerASCII(raw_query);
std::string_view query_view(query);
std::vector<std::string> query_terms;
base::StringViewTokenizer tokenizer(query_view, kTokenDelimiters);
while (tokenizer.GetNext()) {
const std::string_view term_view = TrimTermView(tokenizer.token());
if (term_view.size() >= min_term_length &&
!stop_words_hashes.contains(HashString(term_view))) {
query_terms.emplace_back(term_view);
}
}
return query_terms;
}
inline bool IsCharNonAscii(char c) {
return (c & 0x80) != 0;
}
void EraseNonAsciiCharacters(std::string& passage) {
// Inject spaces to avoid bridging terms. Even if this separates what
// might have been a single term with ideal character conversions, it
// won't create a blind spot for search because the query will be
// converted in exactly the same way; then the separate terms match.
// On the other hand, without the spaces, terms could be bridged and
// become harder to find.
for (size_t i = 1; i < passage.length(); i++) {
if (IsCharNonAscii(passage[i]) && !IsCharNonAscii(passage[i - 1])) {
// Note this never changes a non-ASCII character at index 0 because it
// isn't needed. The character at index 1 is either ASCII, in which case
// it will become the new first character; or it's non-ASCII, in which
// case it will be removed along with the first.
passage[i] = ' ';
// Skip immediately following non-ASCII bytes; they will be removed
// below after the space injection pass.
while (i + 1 < passage.length() && IsCharNonAscii(passage[i + 1])) {
i++;
}
}
}
// Erase all non-ASCII characters remaining.
std::erase_if(passage, IsCharNonAscii);
}
void EraseNonAsciiCharacters(std::vector<std::string>& passages) {
for (std::string& passage : passages) {
EraseNonAsciiCharacters(passage);
}
}
} // namespace history_embeddings
|