File: vector_database.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (490 lines) | stat: -rw-r--r-- 18,311 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/history_embeddings/vector_database.h"

#include <algorithm>
#include <queue>

#include "base/strings/string_split.h"
#include "base/strings/string_tokenizer.h"
#include "base/strings/string_util.h"
#include "base/timer/elapsed_timer.h"
#include "components/history_embeddings/history_embeddings_features.h"
#include "third_party/farmhash/src/src/farmhash.h"

namespace history_embeddings {

uint32_t HashString(std::string_view str) {
  return util::Fingerprint32(str);
}

// Standard normalized magnitude for all embeddings.
constexpr float kUnitLength = 1.0f;

// Close enough to be considered near zero.
constexpr float kEpsilon = 0.01f;

// These delimiters separate queries and passages into tokens.
constexpr char kTokenDelimiters[] = " .,;";

namespace {

// Reduces and returns `term_view` with common characters trimmed from
// start and end.
inline std::string_view TrimTermView(std::string_view term_view) {
  return base::TrimString(term_view, ".?!,:;-()[]{}<>\"'/\\*&#~@^|%$`+=",
                          base::TrimPositions::TRIM_ALL);
}

// Increases occurrence counts for each element of `query_terms` as they are
// found in `passage`, ranging from zero up to `max_count` inclusive. The
// `term_counts` vector is modified while counting, corresponding 1:1 with the
// terms, so its size must exactly match that of `query_terms`. Each term is
// already-folded ASCII, and `passage` is pure ASCII, so it can be folded
// efficiently during search.  Note: This can be simplified to gain performance
// boost if we do text cleaning and folding of passages in advance.
void CountTermsInPassage(std::vector<size_t>& term_counts,
                         const std::vector<std::string>& query_terms,
                         std::string_view passage,
                         const size_t max_count) {
  DCHECK_EQ(term_counts.size(), query_terms.size());
  DCHECK(base::IsStringASCII(passage));
  DCHECK(std::ranges::all_of(
      query_terms, [](std::string_view term) { return !term.empty(); }));
  DCHECK(std::ranges::all_of(query_terms, [](std::string_view term) {
    return base::IsStringASCII(term);
  }));
  DCHECK(std::ranges::all_of(query_terms, [](std::string_view term) {
    return base::ToLowerASCII(term) == term;
  }));

  base::StringViewTokenizer tokenizer(passage, kTokenDelimiters);
  while (tokenizer.GetNext()) {
    const std::string_view token = TrimTermView(tokenizer.token());
    for (size_t term_index = 0; term_index < query_terms.size(); term_index++) {
      if (term_counts[term_index] >= max_count) {
        continue;
      }
      const std::string_view query_term = query_terms[term_index];
      if (query_term.size() != token.size()) {
        continue;
      }
      size_t char_index;
      for (char_index = 0; char_index < token.size(); char_index++) {
        if (query_term[char_index] != base::ToLowerASCII(token[char_index])) {
          break;
        }
      }
      if (char_index == token.size()) {
        term_counts[term_index]++;
      }
    }
  }
}

}  // namespace

////////////////////////////////////////////////////////////////////////////////

ScoredUrl::ScoredUrl(history::URLID url_id,
                     history::VisitID visit_id,
                     base::Time visit_time,
                     float score,
                     float word_match_score)
    : url_id(url_id),
      visit_id(visit_id),
      visit_time(visit_time),
      score(score),
      word_match_score(word_match_score) {}
ScoredUrl::~ScoredUrl() = default;
ScoredUrl::ScoredUrl(ScoredUrl&&) = default;
ScoredUrl& ScoredUrl::operator=(ScoredUrl&&) = default;
ScoredUrl::ScoredUrl(const ScoredUrl&) = default;
ScoredUrl& ScoredUrl::operator=(const ScoredUrl&) = default;

////////////////////////////////////////////////////////////////////////////////

SearchParams::SearchParams() = default;
SearchParams::SearchParams(const SearchParams&) = default;
SearchParams::SearchParams(SearchParams&&) = default;
SearchParams::~SearchParams() = default;
SearchParams& SearchParams::operator=(const SearchParams&) = default;

////////////////////////////////////////////////////////////////////////////////

SearchInfo::SearchInfo() = default;
SearchInfo::SearchInfo(SearchInfo&&) = default;
SearchInfo::~SearchInfo() = default;

////////////////////////////////////////////////////////////////////////////////

UrlData::UrlData(history::URLID url_id,
                 history::VisitID visit_id,
                 base::Time visit_time)
    : url_id(url_id), visit_id(visit_id), visit_time(visit_time) {}
UrlData::UrlData(const UrlData&) = default;
UrlData::UrlData(UrlData&&) = default;
UrlData& UrlData::operator=(const UrlData&) = default;
UrlData& UrlData::operator=(UrlData&&) = default;
UrlData::~UrlData() = default;

bool UrlData::operator==(const UrlData& other) const {
  if (other.url_id == url_id && other.visit_id == visit_id &&
      other.visit_time == visit_time && embeddings == other.embeddings) {
    std::string a, b;
    if (other.passages.SerializeToString(&a) &&
        passages.SerializeToString(&b)) {
      return a == b;
    }
  }
  return false;
}

UrlScore UrlData::BestScoreWith(
    SearchInfo& search_info,
    const SearchParams& search_params,
    const passage_embeddings::Embedding& query_embedding,
    size_t min_passage_word_count) const {
  constexpr float kMaxFloat = std::numeric_limits<float>::max();
  float word_match_required_score =
      search_params.word_match_minimum_embedding_score;
  std::vector<size_t> term_counts;
  if (search_params.query_terms.size() >
      search_params.word_match_max_term_count) {
    // Disable word match boosting for this long query.
    word_match_required_score = kMaxFloat;
  } else {
    // Prepare to count terms by initializing all term counts to zero.
    // These will continue to increase for each passage until we have
    // the total for this URL's full passage set.
    term_counts.assign(search_params.query_terms.size(), 0);
  }

  float best = 0.0f;
  std::string modified_passage;
  const std::string* passage = nullptr;
  for (size_t i = 0; i < embeddings.size(); i++) {
    const passage_embeddings::Embedding& embedding = embeddings[i];
    passage = &passages.passages(i);

    // Skip non-ASCII strings to avoid scoring problems with the model.
    // Note that if `erase_non_ascii_characters` is true then the embeddings
    // have already be recomputed with non-ASCII characters excluded from the
    // source passages, and are thus usable for search. In such cases, we can
    // also modify the passage for term search.
    bool skip_similarity_scoring = false;
    if (!base::IsStringASCII(*passage)) {
      if (search_params.erase_non_ascii_characters ||
          search_params.word_match_search_non_ascii_passages) {
        search_info.modified_nonascii_passage_count++;
        if (word_match_required_score != kMaxFloat) {
          // Copy and modify the passage to exclude the non-ASCII characters.
          // Note that for efficiency this is only done when the modified
          // passage will actually be used for term counting in logic below.
          modified_passage = *passage;
          EraseNonAsciiCharacters(modified_passage);
          passage = &modified_passage;
          if (!search_params.erase_non_ascii_characters) {
            // The embedding for this passage is not valid, but the passage
            // can still be word match text searched.
            skip_similarity_scoring = true;
          }
        }
      } else {
        search_info.skipped_nonascii_passage_count++;
        continue;
      }
    }

    float score = skip_similarity_scoring || embedding.GetPassageWordCount() <
                                                 min_passage_word_count
                      ? 0.0f
                      : query_embedding.ScoreWith(embedding);

    if (score >= word_match_required_score || skip_similarity_scoring) {
      // Since the ASCII check above processed the whole passage string, it is
      // likely ready in CPU cache. Scan text again to count terms in passage.
      base::ElapsedTimer timer;
      CountTermsInPassage(term_counts, search_params.query_terms, *passage,
                          search_params.word_match_limit);
      search_info.passage_scanning_time += timer.Elapsed();
    }

    best = std::max(best, score);
  }

  // Calculate total boost from term counts across all passages.
  float word_match_boost = 0.0f;
  if (!term_counts.empty()) {
    size_t terms_found = 0;
    for (size_t term_count : term_counts) {
      float term_boost = search_params.word_match_score_boost_factor *
                         term_count / search_params.word_match_limit;
      // Boost factor is applied per term such that longer queries boost more.
      word_match_boost += term_boost;
      if (term_count > 0) {
        terms_found++;
      }
    }
    if (static_cast<float>(terms_found) /
            static_cast<float>(term_counts.size()) <
        search_params.word_match_required_term_ratio) {
      // Don't boost at all when not enough of the query terms were found.
      word_match_boost = 0.0f;
    } else {
      // Normalize to avoid over-boosting long queries with many words.
      word_match_boost /=
          std::max<size_t>(1, search_params.query_terms.size() +
                                  search_params.word_match_smoothing_factor);
    }
  }

  return UrlScore{
      .score = best + word_match_boost,
      .word_match_score = word_match_boost,
  };
}

////////////////////////////////////////////////////////////////////////////////

SearchInfo VectorDatabase::FindNearest(
    std::optional<base::Time> time_range_start,
    size_t count,
    const SearchParams& search_params,
    const passage_embeddings::Embedding& query_embedding,
    base::RepeatingCallback<bool()> is_search_halted) {
  if (count == 0) {
    return {};
  }

  std::unique_ptr<UrlDataIterator> iterator =
      MakeUrlDataIterator(time_range_start);
  if (!iterator) {
    return {};
  }

  // Dimensions are always equal.
  CHECK_EQ(query_embedding.Dimensions(), GetEmbeddingDimensions());

  // Magnitudes are also assumed equal; they are provided normalized by design.
  CHECK_LT(std::abs(query_embedding.Magnitude() - kUnitLength), kEpsilon);

  // Embeddings must have source passages with at least this many words in order
  // to be considered during the search. Insufficient word count embeddings
  // will score zero against the query_embedding.
  size_t min_passage_word_count =
      GetFeatureParameters().search_passage_minimum_word_count;

  struct CompareScore {
    bool operator()(const ScoredUrl& a, const ScoredUrl& b) {
      return a.score > b.score;
    }
  };
  struct CompareWordMatchScore {
    bool operator()(const ScoredUrl& a, const ScoredUrl& b) {
      return a.word_match_score > b.word_match_score;
    }
  };
  std::priority_queue<ScoredUrl, std::vector<ScoredUrl>, CompareScore>
      top_by_score;
  std::priority_queue<ScoredUrl, std::vector<ScoredUrl>, CompareWordMatchScore>
      top_by_word_match_score;

  SearchInfo search_info;
  search_info.completed = true;
  base::ElapsedTimer total_timer;
  while (const UrlData* url_data = iterator->Next()) {
    if (is_search_halted.Run()) {
      search_info.completed = false;
      break;
    }
    search_info.searched_url_count++;
    search_info.searched_embedding_count += url_data->embeddings.size();

    base::ElapsedTimer scoring_timer;
    UrlScore url_score = url_data->BestScoreWith(
        search_info, search_params, query_embedding, min_passage_word_count);

    top_by_score.emplace(url_data->url_id, url_data->visit_id,
                         url_data->visit_time, url_score.score,
                         url_score.word_match_score);
    while (top_by_score.size() > count) {
      top_by_score.pop();
    }

    top_by_word_match_score.emplace(url_data->url_id, url_data->visit_id,
                                    url_data->visit_time, url_score.score,
                                    url_score.word_match_score);
    while (top_by_word_match_score.size() > count) {
      top_by_word_match_score.pop();
    }

    search_info.scoring_time += scoring_timer.Elapsed();
  }
  search_info.total_search_time = total_timer.Elapsed();

  // TODO(b/363083815): Log histograms and rework caller time histogram.
  if (search_info.total_search_time.is_zero()) {
    VLOG(1) << "Inner search total (μs): "
            << search_info.total_search_time.InMicroseconds();
  } else {
    VLOG(1) << "Inner search total (μs): "
            << search_info.total_search_time.InMicroseconds()
            << " ; scoring (μs): " << search_info.scoring_time.InMicroseconds()
            << " ; scoring %: "
            << search_info.scoring_time * 100 / search_info.total_search_time
            << " ; passage scanning (μs): "
            << search_info.passage_scanning_time.InMicroseconds()
            << " ; passage scanning %: "
            << search_info.passage_scanning_time * 100 /
                   search_info.total_search_time;
  }

  // Empty queues into vectors and return results sorted with descending scores.
  while (!top_by_score.empty()) {
    search_info.scored_urls.push_back(top_by_score.top());
    top_by_score.pop();
  }
  while (!top_by_word_match_score.empty()) {
    search_info.word_match_scored_urls.push_back(top_by_word_match_score.top());
    top_by_word_match_score.pop();
  }
  std::ranges::reverse(search_info.scored_urls);
  std::ranges::reverse(search_info.word_match_scored_urls);
  return search_info;
}

////////////////////////////////////////////////////////////////////////////////

VectorDatabaseInMemory::VectorDatabaseInMemory() = default;
VectorDatabaseInMemory::~VectorDatabaseInMemory() = default;

void VectorDatabaseInMemory::SaveTo(VectorDatabase* database) {
  for (UrlData& url_data : data_) {
    database->AddUrlData(std::move(url_data));
  }
  data_.clear();
}

size_t VectorDatabaseInMemory::GetEmbeddingDimensions() const {
  return data_.empty() ? 0 : data_[0].embeddings[0].Dimensions();
}

bool VectorDatabaseInMemory::AddUrlData(UrlData url_data) {
  CHECK_EQ(static_cast<size_t>(url_data.passages.passages_size()),
           url_data.embeddings.size());
  if (!data_.empty()) {
    for (const passage_embeddings::Embedding& embedding : url_data.embeddings) {
      // All embeddings in the database must have equal dimensions.
      CHECK_EQ(embedding.Dimensions(), data_[0].embeddings[0].Dimensions());
      // All embeddings in the database are expected to be normalized.
      CHECK_LT(std::abs(embedding.Magnitude() - kUnitLength), kEpsilon);
    }
  }

  data_.push_back(std::move(url_data));
  return true;
}

std::unique_ptr<VectorDatabase::UrlDataIterator>
VectorDatabaseInMemory::MakeUrlDataIterator(
    std::optional<base::Time> time_range_start) {
  struct SimpleIterator : public UrlDataIterator {
    explicit SimpleIterator(const std::vector<UrlData>& source,
                            std::optional<base::Time> time_range_start)
        : iterator_(source.cbegin()),
          end_(source.cend()),
          time_range_start_(time_range_start) {}
    ~SimpleIterator() override = default;

    const UrlData* Next() override {
      if (time_range_start_.has_value()) {
        while (iterator_ != end_) {
          if (iterator_->visit_time >= time_range_start_.value()) {
            break;
          }
          iterator_++;
        }
      }

      if (iterator_ == end_) {
        return nullptr;
      }
      return &(*iterator_++);
    }

    std::vector<UrlData>::const_iterator iterator_;
    std::vector<UrlData>::const_iterator end_;
    const std::optional<base::Time> time_range_start_;
  };

  if (data_.empty()) {
    return nullptr;
  }

  return std::make_unique<SimpleIterator>(data_, time_range_start);
}

std::vector<std::string> SplitQueryToTerms(
    const std::unordered_set<uint32_t>& stop_words_hashes,
    std::string_view raw_query,
    size_t min_term_length) {
  // Configuration may permit zero-length terms, but empty strings
  // are never useful in search so the effective minimum then is one.
  min_term_length = min_term_length > 0 ? min_term_length : 1;
  std::string query = base::ToLowerASCII(raw_query);
  std::string_view query_view(query);
  std::vector<std::string> query_terms;

  base::StringViewTokenizer tokenizer(query_view, kTokenDelimiters);
  while (tokenizer.GetNext()) {
    const std::string_view term_view = TrimTermView(tokenizer.token());
    if (term_view.size() >= min_term_length &&
        !stop_words_hashes.contains(HashString(term_view))) {
      query_terms.emplace_back(term_view);
    }
  }

  return query_terms;
}

inline bool IsCharNonAscii(char c) {
  return (c & 0x80) != 0;
}

void EraseNonAsciiCharacters(std::string& passage) {
  // Inject spaces to avoid bridging terms. Even if this separates what
  // might have been a single term with ideal character conversions, it
  // won't create a blind spot for search because the query will be
  // converted in exactly the same way; then the separate terms match.
  // On the other hand, without the spaces, terms could be bridged and
  // become harder to find.
  for (size_t i = 1; i < passage.length(); i++) {
    if (IsCharNonAscii(passage[i]) && !IsCharNonAscii(passage[i - 1])) {
      // Note this never changes a non-ASCII character at index 0 because it
      // isn't needed. The character at index 1 is either ASCII, in which case
      // it will become the new first character; or it's non-ASCII, in which
      // case it will be removed along with the first.
      passage[i] = ' ';

      // Skip immediately following non-ASCII bytes; they will be removed
      // below after the space injection pass.
      while (i + 1 < passage.length() && IsCharNonAscii(passage[i + 1])) {
        i++;
      }
    }
  }

  // Erase all non-ASCII characters remaining.
  std::erase_if(passage, IsCharNonAscii);
}

void EraseNonAsciiCharacters(std::vector<std::string>& passages) {
  for (std::string& passage : passages) {
    EraseNonAsciiCharacters(passage);
  }
}

}  // namespace history_embeddings