1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "components/language_detection/core/embedding_lookup.h"
#include "base/check_op.h"
#include "components/language_detection/core/quantization_utils.h"
#include "third_party/flatbuffers/src/include/flatbuffers/flexbuffers.h"
#include "third_party/tflite/src/tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "third_party/tflite/src/tensorflow/lite/kernels/kernel_util.h"
namespace language_detection {
namespace {
using ::flexbuffers::GetRoot;
using ::flexbuffers::Map;
constexpr int kInputMessage = 0;
constexpr int kEmbeddingTable = 1;
constexpr int kMinVal = 2;
constexpr int kMaxVal = 3;
constexpr int kOutputLabel = 0;
constexpr int kNumFloatBits = 8 * sizeof(float);
class EmbeddingLookupOpParams {
public:
explicit EmbeddingLookupOpParams(const bool is_quantized,
const int num_precision_bits)
: is_quantized_(is_quantized), num_precision_bits_(num_precision_bits) {}
bool IsQuantized() const { return is_quantized_; }
int GetNumBits() const { return num_precision_bits_; }
TfLiteStatus Validate(TfLiteContext* context) const {
// Validate that the `num_precision_bits` and `is_quantized` are set to
// sane values.
if (!is_quantized_)
return kTfLiteOk;
if (!(num_precision_bits_ >= 2 && num_precision_bits_ < 32 &&
(32 % num_precision_bits_) == 0)) {
context->ReportError(
context,
"`num_precision_bits` must be in [2, 32) and a divisor of 32.");
return kTfLiteError;
}
return kTfLiteOk;
}
private:
const bool is_quantized_;
const int num_precision_bits_;
};
int GetOutputEmbeddingSize(const int input_embedding_size,
const bool is_quantized,
const int num_precision_bits) {
DCHECK_GT(num_precision_bits, 0);
return is_quantized
? (input_embedding_size * kNumFloatBits) / num_precision_bits
: input_embedding_size;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
const uint8* buffer_t = reinterpret_cast<const uint8*>(buffer);
const Map& m = GetRoot(buffer_t, length).AsMap();
const bool is_quantized =
(m["is_quantized"].IsNull() ? false : m["is_quantized"].AsBool());
const int num_precision_bits = m["num_precision_bits"].AsInt32();
return new EmbeddingLookupOpParams(is_quantized, num_precision_bits);
}
void Free(TfLiteContext* context, void* buffer) {
delete reinterpret_cast<EmbeddingLookupOpParams*>(buffer);
}
TfLiteStatus Resize(TfLiteContext* context, TfLiteNode* node) {
TfLiteTensor* output = tflite::GetOutput(context, node, kOutputLabel);
TF_LITE_ENSURE(context, output != nullptr);
const EmbeddingLookupOpParams* params =
reinterpret_cast<EmbeddingLookupOpParams*>(node->user_data);
TF_LITE_ENSURE_OK(context, params->Validate(context));
TfLiteIntArray* output_size = TfLiteIntArrayCreate(2);
output_size->data[0] = 1;
const TfLiteTensor* input_tensor =
tflite::GetInput(context, node, kEmbeddingTable);
TF_LITE_ENSURE(context, input_tensor != nullptr);
const int input_embedding_size = input_tensor->dims->data[1];
output_size->data[1] = GetOutputEmbeddingSize(
input_embedding_size, params->IsQuantized(), params->GetNumBits());
return context->ResizeTensor(context, output, output_size);
}
// This is the core method that generates the aggregated embedding from the
// given input and embedding table tensors.
//
// If `is_quantized` is set to false, the `embedding_table` is considered to
// be a regular floating-point tensor, with each row representing an
// embedding vector, and each element in the vector is an embedding dimension.
//
// If `is_quantized` is set to true, the `embedding_table` is considered to be
// a packed quantized tensor, with each row still representing an embedding
// vector. However, each element in the vector contains 'packed' n-bit quantized
// representation of m embedding dimensions.
//
// n = `num_precision_bits`,
// m = 32 / n.
void GetEmbedding(const TfLiteTensor* input,
const TfLiteTensor* embedding_table,
const float min_val,
const float max_val,
float* data,
const EmbeddingLookupOpParams* params) {
const bool is_quantized = params->IsQuantized();
const int num_precision_bits = params->GetNumBits();
const int input_embedding_size = embedding_table->dims->data[1];
const int num_tokens = input->dims->data[1];
const int output_embedding_size = GetOutputEmbeddingSize(
input_embedding_size, is_quantized, num_precision_bits);
int num_embeddings = 0;
std::vector<float> final_embedding(output_embedding_size, 0.0);
for (int token_idx = 0; token_idx < num_tokens; token_idx++) {
const int32 token = tflite::GetTensorData<int32>(input)[token_idx];
if (token == 0) {
break;
}
if (is_quantized) {
// The embedding table contains the packed quantized representation of the
// embedding table.
const int compression_factor = 32 / num_precision_bits;
const uint32 mask = (1L << num_precision_bits) - 1;
const QuantizationParams quant_params =
GetQuantizationParams(min_val, max_val, num_precision_bits);
for (int embed_idx = 0; embed_idx < input_embedding_size; embed_idx++) {
// Extract the packed embedding at the given index.
uint32 packed_embedding = tflite::GetTensorData<uint32>(
embedding_table)[token * input_embedding_size + embed_idx];
for (int num_dims_extracted = 0;
num_dims_extracted < compression_factor; num_dims_extracted++) {
uint32 quantized_val = (packed_embedding & mask);
// Dequantize the quantized value, so that we can get an approximation
// for the original value.
float dequantized_value =
QuantizedToFloatWithQuantParams(quantized_val, quant_params);
final_embedding[embed_idx * compression_factor +
num_dims_extracted] += dequantized_value;
packed_embedding >>= num_precision_bits;
}
}
} else {
// The embedding table is stored uncompressed.
for (int embed_idx = 0; embed_idx < input_embedding_size; embed_idx++) {
// Extract the raw value of the dimension in the embedding table.
const float raw_dim_value =
embedding_table->data.f[token * input_embedding_size + embed_idx];
final_embedding[embed_idx] += raw_dim_value;
}
}
++num_embeddings;
}
// Compute the mean of the embeddings.
for (int embed_idx = 0; embed_idx < output_embedding_size; embed_idx++) {
data[embed_idx] =
final_embedding[embed_idx] / (std::max(num_embeddings, 1));
}
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const EmbeddingLookupOpParams* params =
reinterpret_cast<EmbeddingLookupOpParams*>(node->user_data);
TF_LITE_ENSURE_OK(context, params->Validate(context));
const TfLiteTensor* input = tflite::GetInput(context, node, kInputMessage);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* embedding_table =
tflite::GetInput(context, node, kEmbeddingTable);
TF_LITE_ENSURE(context, embedding_table != nullptr);
const TfLiteTensor* min_val = tflite::GetInput(context, node, kMinVal);
TF_LITE_ENSURE(context, min_val != nullptr);
const TfLiteTensor* max_val = tflite::GetInput(context, node, kMaxVal);
TF_LITE_ENSURE(context, max_val != nullptr);
TfLiteTensor* output = tflite::GetOutput(context, node, kOutputLabel);
TF_LITE_ENSURE(context, output != nullptr);
// Sanity checks on the input.
const int batch_size = input->dims->data[0];
if (batch_size != 1) {
context->ReportError(context, "`batch_size` must be == 1.");
return kTfLiteError;
}
if (output->type != kTfLiteFloat32) {
context->ReportError(context, "Output type must be Float32.");
return kTfLiteError;
}
// Compute the output embedding.
GetEmbedding(input, embedding_table, tflite::GetTensorData<float>(min_val)[0],
tflite::GetTensorData<float>(max_val)[0],
tflite::GetTensorData<float>(output), params);
return kTfLiteOk;
}
} // namespace
TfLiteRegistration* Register_EMBEDDING_LOOKUP() {
static TfLiteRegistration r = {Init, Free, Resize, Eval};
return &r;
}
} // namespace language_detection
|