1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/language_detection/core/language_detection_model.h"
#include <memory>
#include "base/compiler_specific.h"
#include "base/containers/span.h"
#include "base/files/file_util.h"
#include "base/files/scoped_temp_dir.h"
#include "base/metrics/metrics_hashes.h"
#include "base/run_loop.h"
#include "base/strings/utf_string_conversions.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/task_environment.h"
#include "build/build_config.h"
#include "components/language_detection/core/constants.h"
#include "components/language_detection/core/language_detection_provider.h"
#include "components/language_detection/testing/language_detection_test_utils.h"
#include "components/translate/core/common/translate_constants.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace language_detection {
namespace {
// Pads out `s` with spaces until it is `len` long.
void pad(std::u16string& s, size_t len) {
while (s.length() < len) {
s += u" ";
}
}
} // namespace
base::File CreateInvalidModelFile() {
base::ScopedTempDir temp_dir;
EXPECT_TRUE(temp_dir.CreateUniqueTempDir());
base::FilePath file_path =
temp_dir.GetPath().AppendASCII("model_file.tflite");
base::File file(file_path, (base::File::FLAG_CREATE | base::File::FLAG_READ |
base::File::FLAG_WRITE |
base::File::FLAG_CAN_DELETE_ON_CLOSE));
EXPECT_TRUE(
file.WriteAtCurrentPosAndCheck(base::byte_span_from_cstring("12345")));
return file;
}
class LanguageDetectionTest : public testing::Test {
protected:
base::test::TaskEnvironment environment_;
base::HistogramTester histogram_tester_;
};
TEST_F(LanguageDetectionTest, ModelUnavailable) {
LanguageDetectionModel language_detection_model;
EXPECT_FALSE(language_detection_model.IsAvailable());
}
TEST_F(LanguageDetectionTest, EmptyFileProvided) {
LanguageDetectionModel language_detection_model;
base::RunLoop run_loop;
language_detection_model.AddOnModelLoadedCallback(base::BindOnce(
[](base::OnceClosure callback, LanguageDetectionModel& model) {
EXPECT_FALSE(model.IsAvailable());
std::move(callback).Run();
},
run_loop.QuitClosure()));
language_detection_model.UpdateWithFile(base::File());
run_loop.Run();
EXPECT_FALSE(language_detection_model.IsAvailable());
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.LanguageDetectionModelState",
LanguageDetectionModelState::kModelFileInvalid, 1);
}
TEST_F(LanguageDetectionTest, EmptyFileProvidedAsync) {
LanguageDetectionModel language_detection_model;
base::RunLoop run_loop;
language_detection_model.AddOnModelLoadedCallback(base::BindOnce(
[](base::OnceClosure callback, LanguageDetectionModel& model) {
EXPECT_FALSE(model.IsAvailable());
std::move(callback).Run();
},
run_loop.QuitClosure()));
language_detection_model.UpdateWithFileAsync(base::File(), base::DoNothing());
run_loop.Run();
EXPECT_FALSE(language_detection_model.IsAvailable());
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.LanguageDetectionModelState",
LanguageDetectionModelState::kModelFileInvalid, 1);
}
TEST_F(LanguageDetectionTest, UnsupportedModelFileProvided) {
base::File file = CreateInvalidModelFile();
LanguageDetectionModel language_detection_model;
base::RunLoop run_loop;
language_detection_model.AddOnModelLoadedCallback(base::BindOnce(
[](base::OnceClosure callback, LanguageDetectionModel& model) {
EXPECT_FALSE(model.IsAvailable());
std::move(callback).Run();
},
run_loop.QuitClosure()));
language_detection_model.UpdateWithFile(std::move(file));
run_loop.Run();
EXPECT_FALSE(language_detection_model.IsAvailable());
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.LanguageDetectionModelState",
LanguageDetectionModelState::kModelFileValid, 1);
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.InvalidModelFile", true, 1);
histogram_tester_.ExpectTotalCount(
"LanguageDetection.TFLiteModel.Create.Duration", 0);
}
TEST_F(LanguageDetectionTest, UnsupportedModelFileProvidedAsync) {
base::File file = CreateInvalidModelFile();
LanguageDetectionModel language_detection_model;
base::RunLoop run_loop;
language_detection_model.AddOnModelLoadedCallback(base::BindOnce(
[](base::OnceClosure callback, LanguageDetectionModel& model) {
EXPECT_FALSE(model.IsAvailable());
std::move(callback).Run();
},
run_loop.QuitClosure()));
language_detection_model.UpdateWithFileAsync(std::move(file),
base::DoNothing());
run_loop.Run();
EXPECT_FALSE(language_detection_model.IsAvailable());
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.LanguageDetectionModelState",
LanguageDetectionModelState::kModelFileValid, 1);
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.InvalidModelFile", true, 1);
histogram_tester_.ExpectTotalCount(
"LanguageDetection.TFLiteModel.Create.Duration", 0);
}
TEST_F(LanguageDetectionTest, CallbackForValidFile) {
LanguageDetectionModel language_detection_model;
base::RunLoop run_loop;
language_detection_model.AddOnModelLoadedCallback(base::BindOnce(
[](base::OnceClosure callback, LanguageDetectionModel& model) {
EXPECT_TRUE(model.IsAvailable());
std::move(callback).Run();
},
run_loop.QuitClosure()));
language_detection_model.UpdateWithFile(GetValidModelFile());
run_loop.Run();
EXPECT_TRUE(language_detection_model.IsAvailable());
}
TEST_F(LanguageDetectionTest, CallbackForValidFileAsync) {
LanguageDetectionModel language_detection_model;
base::RunLoop run_loop;
language_detection_model.AddOnModelLoadedCallback(base::BindOnce(
[](base::OnceClosure callback, LanguageDetectionModel& model) {
EXPECT_TRUE(model.IsAvailable());
std::move(callback).Run();
},
run_loop.QuitClosure()));
language_detection_model.UpdateWithFileAsync(GetValidModelFile(),
base::DoNothing());
run_loop.Run();
EXPECT_TRUE(language_detection_model.IsAvailable());
}
class LanguageDetectionValidTest : public LanguageDetectionTest {
public:
LanguageDetectionValidTest()
: language_detection_model_(GetValidLanguageModel()) {}
protected:
std::unique_ptr<LanguageDetectionModel> language_detection_model_;
};
TEST_F(LanguageDetectionValidTest, ValidModelFileProvided) {
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.LanguageDetectionModelState",
LanguageDetectionModelState::kModelAvailable, 1);
histogram_tester_.ExpectTotalCount(
"LanguageDetection.TFLiteModel.InvalidModelFile", 0);
histogram_tester_.ExpectTotalCount(
"LanguageDetection.TFLiteModel.Create.Duration", 1);
}
TEST_F(LanguageDetectionValidTest, DetectLanguageMetrics) {
std::u16string contents = u"This is a page apparently written in English.";
auto prediction = TopPrediction(language_detection_model_->Predict(contents));
EXPECT_EQ("en", prediction.language);
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.ClassifyText.Size", contents.length(), 1);
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.ClassifyText.Size.PreTruncation",
contents.length(), 1);
histogram_tester_.ExpectTotalCount(
"LanguageDetection.TFLiteModel.ClassifyText.Duration", 1);
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.ClassifyText.Detected", true, 1);
}
// This directly tests the sampling method for longer strings. We have 1 piece
// of text that is unambiguously EN and one that is mixes AR and ZH. We combine
// these so that they become the samples. Since EN is unambiguous, the result
// should be EN.
// This test is highly dependent on the sampling implementation.
// See https://crbug.com/378011996
TEST_F(LanguageDetectionValidTest, DetectWithSampling) {
// If this changes, this test needs to be rewritten.
ASSERT_EQ(LanguageDetectionModel::kNumTextSamples, 3);
std::string predicted_language;
std::u16string en_sample = u"This is a page apparently written in English.";
pad(en_sample, LanguageDetectionModel::kTextSampleLength);
std::u16string ar_zh_sample =
u"متصفح الويب أو مستعرض الويب هو تطبيق برمجي لاسترجاع المعلومات "
"产品的简报和公告 提交该申请后无法进行更改 请确认您的选择是正确的 ";
pad(ar_zh_sample, LanguageDetectionModel::kTextSampleLength);
ASSERT_EQ(en_sample.length(), LanguageDetectionModel::kTextSampleLength);
ASSERT_EQ(ar_zh_sample.length(), LanguageDetectionModel::kTextSampleLength);
// Test against strings where the EN string in the `pos`th sample.
for (int pos = 0; pos < 3; pos++) {
SCOPED_TRACE(pos);
std::u16string s1 = pos == 0 ? en_sample : ar_zh_sample;
std::u16string s2 = pos == 1 ? en_sample : ar_zh_sample;
std::u16string s3 = pos == 2 ? en_sample : ar_zh_sample;
// Construct a string that starts with s1, has s2 starting at mid-point
// and then ends with s3. The string will of length `6*kTextSampleLength`.
std::u16string contents = s1;
pad(contents, LanguageDetectionModel::kTextSampleLength * 3);
contents += s2;
pad(contents, LanguageDetectionModel::kTextSampleLength * 5);
contents += s3;
ASSERT_EQ(contents.length(), 6 * LanguageDetectionModel::kTextSampleLength);
language_detection::Prediction prediction =
language_detection_model_->PredictTopLanguageWithSamples(contents);
EXPECT_EQ("en", prediction.language);
}
}
TEST_F(LanguageDetectionValidTest, PredictWithScanEmptyInput) {
std::u16string empty_string;
std::vector<Prediction> results_empty =
language_detection_model_->PredictWithScan(empty_string);
ASSERT_EQ(TopPrediction(results_empty).language, kUnknownLanguageCode);
}
TEST_F(LanguageDetectionValidTest, PredictWithScan) {
std::string predicted_language;
std::u16string en_sample = u"This is a page apparently written in English.";
pad(en_sample, LanguageDetectionModel::kScanWindowSize);
std::u16string ar_sample =
u"متصفح الويب أو مستعرض الويب هو تطبيق برمجي لاسترجاع المعلومات ";
pad(ar_sample, LanguageDetectionModel::kScanWindowSize);
std::u16string zh_sample =
u"产品的简报和公告 提交该申请后无法进行更改 请确认您的选择是正确的 ";
pad(zh_sample, LanguageDetectionModel::kScanWindowSize);
ASSERT_EQ(en_sample.length(), LanguageDetectionModel::kScanWindowSize);
ASSERT_EQ(ar_sample.length(), LanguageDetectionModel::kScanWindowSize);
ASSERT_EQ(zh_sample.length(), LanguageDetectionModel::kScanWindowSize);
std::u16string final_sample = en_sample + ar_sample + zh_sample;
// Scanning over the concatencated sample shall result in a mean value of the
// three detection results.
std::vector<Prediction> results_en =
language_detection_model_->PredictWithScan(en_sample);
ASSERT_EQ(TopPrediction(results_en).language, "en");
std::vector<Prediction> results_ar =
language_detection_model_->PredictWithScan(ar_sample);
ASSERT_EQ(TopPrediction(results_ar).language, "ar");
std::vector<Prediction> results_zh =
language_detection_model_->PredictWithScan(zh_sample);
ASSERT_EQ(TopPrediction(results_zh).language, "zh");
std::map<std::string, float> confidence_sum;
for (auto&& results : {results_en, results_ar, results_zh}) {
for (auto&& prediction : results) {
confidence_sum[prediction.language] += prediction.score;
}
}
std::vector<Prediction> results_final =
language_detection_model_->PredictWithScan(final_sample);
// The prediction confidence is the mean value of confidence of the
// corresponding language in the three samples.
for (auto&& prediction : results_final) {
ASSERT_TRUE(confidence_sum.contains(prediction.language));
ASSERT_GE(prediction.score * 3,
confidence_sum[prediction.language] - 0.0001);
ASSERT_LE(prediction.score * 3,
confidence_sum[prediction.language] + 0.0001);
}
}
TEST_F(LanguageDetectionValidTest, Truncation) {
std::u16string contents = u"This is a page apparently written in English.";
// Make a longer string. Much long than the truncation length to make sure
// different histogram buckets are involved.
contents += contents;
contents += contents;
contents += contents;
contents += contents;
contents += contents;
ASSERT_GE(contents.length(), kModelTruncationLength * 4);
// Long string with truncation.
base::HistogramTester histogram_tester_;
auto prediction = TopPrediction(language_detection_model_->Predict(contents));
EXPECT_EQ("en", prediction.language);
histogram_tester_.ExpectUniqueSample(
"LanguageDetection.TFLiteModel.ClassifyText.Size", kModelTruncationLength,
1);
}
// Regression test for https://crbug.com/1414235. This test is expecting that
// the code under test does not crash on ASan.
TEST_F(LanguageDetectionValidTest, UnalignedString) {
std::u16string contents(1, ' ');
language_detection_model_->Predict(contents);
}
} // namespace language_detection
|