1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "components/language_detection/core/ngram_hash.h"
#include <string>
#include "components/language_detection/core/ngram_hash_ops_utils.h"
#include "third_party/flatbuffers/src/include/flatbuffers/flexbuffers.h"
#include "third_party/flatbuffers/src/include/flatbuffers/util.h"
#include "third_party/smhasher/src/src/MurmurHash2.h"
#include "third_party/tflite/src/tensorflow/lite/kernels/kernel_util.h"
#include "third_party/tflite/src/tensorflow/lite/string_util.h"
namespace language_detection {
namespace {
using ::flexbuffers::GetRoot;
using ::flexbuffers::Map;
using ::flexbuffers::TypedVector;
using ::tflite::GetString;
using ::tflite::StringRef;
constexpr int kInputMessage = 0;
constexpr int kOutputLabel = 0;
constexpr int kDefaultMaxSplits = 128;
// This op takes in a string, finds the character ngrams for it and then
// maps each of these ngrams to an index using the specified vocabulary sizes.
// Input(s):
// - input: Input string.
// - seeds: Seed for the random number generator.
// - ngram_lengths: Lengths of each of the ngrams. For example [1, 2, 3] would
// be interpreted as generating unigrams, bigrams, and trigrams.
// - vocab_sizes: Size of the vocabulary for each of the ngram features
// respectively. The op would generate vocab ids to be less than or equal to
// the vocab size. The index 0 implies an invalid ngram.
// - max_splits: Maximum number of tokens in the output. If this is unset, the
// limit is `kDefaultMaxSplits`.
// - lower_case_input: If this is set to true, the input string would be
// lower-cased before any processing.
// Output(s):
// - output: A tensor of size [number of ngrams, number of tokens + 2],
// where 2 tokens are reserved for the padding. If `max_splits` is set, this
// length is <= max_splits, otherwise it is <= `kDefaultMaxSplits`.
// Helper class used for pre-processing the input.
class NGramHashParams {
public:
NGramHashParams(const uint64_t seed,
const std::vector<int>& ngram_lengths,
const std::vector<int>& vocab_sizes,
int max_splits,
bool lower_case_input)
: seed_(seed),
ngram_lengths_(ngram_lengths),
vocab_sizes_(vocab_sizes),
max_splits_(max_splits),
lower_case_input_(lower_case_input) {}
TfLiteStatus PreprocessInput(const TfLiteTensor* input_t,
TfLiteContext* context) {
if (input_t->bytes == 0) {
context->ReportError(context, "Empty input not supported.");
return kTfLiteError;
}
// Do sanity checks on the input.
if (ngram_lengths_.empty()) {
context->ReportError(context, "`ngram_lengths` must be non-empty.");
return kTfLiteError;
}
if (vocab_sizes_.empty()) {
context->ReportError(context, "`vocab_sizes` must be non-empty.");
return kTfLiteError;
}
if (ngram_lengths_.size() != vocab_sizes_.size()) {
context->ReportError(
context,
"Sizes of `ngram_lengths` and `vocab_sizes` must be the same.");
return kTfLiteError;
}
if (max_splits_ <= 0) {
context->ReportError(context, "`max_splits` must be > 0.");
return kTfLiteError;
}
// Obtain and tokenize the input.
StringRef input_ref = GetString(input_t, /*string_index=*/0);
if (lower_case_input_) {
std::string lower_cased_str;
LowercaseUnicodeStr(input_ref.str, input_ref.len, &lower_cased_str);
tokenized_output_ =
Tokenize(lower_cased_str.c_str(), input_ref.len, max_splits_,
/*exclude_nonalphaspace_tokens=*/true);
} else {
tokenized_output_ = Tokenize(input_ref.str, input_ref.len, max_splits_,
/*exclude_nonalphaspace_tokens=*/true);
}
return kTfLiteOk;
}
uint64_t GetSeed() const { return seed_; }
int GetNumTokens() const { return tokenized_output_.tokens.size(); }
int GetNumNGrams() const { return ngram_lengths_.size(); }
const std::vector<int>& GetNGramLengths() const { return ngram_lengths_; }
const std::vector<int>& GetVocabSizes() const { return vocab_sizes_; }
const TokenizedOutput& GetTokenizedOutput() const {
return tokenized_output_;
}
TokenizedOutput tokenized_output_;
private:
const uint64_t seed_;
std::vector<int> ngram_lengths_;
std::vector<int> vocab_sizes_;
const int max_splits_;
const bool lower_case_input_;
};
// Convert the TypedVector into a regular std::vector.
std::vector<int> GetIntVector(TypedVector typed_vec) {
std::vector<int> vec(typed_vec.size());
for (size_t j = 0; j < typed_vec.size(); j++) {
vec[j] = typed_vec[j].AsInt32();
}
return vec;
}
void GetNGramHashIndices(NGramHashParams* params, int32_t* data) {
const int max_unicode_length = params->GetNumTokens();
const auto ngram_lengths = params->GetNGramLengths();
const auto vocab_sizes = params->GetVocabSizes();
const auto& tokenized_output = params->GetTokenizedOutput();
const auto seed = params->GetSeed();
// Compute for each ngram.
for (size_t ngram = 0; ngram < ngram_lengths.size(); ngram++) {
const int vocab_size = vocab_sizes[ngram];
const int ngram_length = ngram_lengths[ngram];
// Compute for each token within the input.
for (size_t start = 0; start < tokenized_output.tokens.size(); start++) {
// Compute the number of bytes for the ngram starting at the given
// token.
int num_bytes = 0;
for (size_t i = start;
i < tokenized_output.tokens.size() && i < (start + ngram_length);
i++) {
num_bytes += tokenized_output.tokens[i].second;
}
// Compute the hash for the ngram starting at the token.
//
// TODO(crbug.com/40601370): Murmur2 has only 2 remaining uses in
// Chrome. Migrate to a different hash that's more widely used in future
// versions of the mode and also supports 32/64 bit platforms
// seamlessly. Anything over num_bytes = 7 can overflow on 32-bit. By
// limiting to 7, this may truncate the last byte of the input and result
// in a slightly different hash but impact should be minimal.
const auto str_hash = MurmurHash64A(
tokenized_output.str.c_str() + tokenized_output.tokens[start].first,
std::min(num_bytes, 7), seed);
// Map the hash to an index in the vocab.
data[ngram * max_unicode_length + start] = (str_hash % vocab_size) + 1;
}
}
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
const Map& m = GetRoot(buffer_t, length).AsMap();
const uint64_t seed = m["seed"].AsInt64();
const std::vector<int> ngram_lengths =
GetIntVector(m["ngram_lengths"].AsTypedVector());
const std::vector<int> vocab_sizes =
GetIntVector(m["vocab_sizes"].AsTypedVector());
const int max_splits =
m["max_splits"].IsNull() ? kDefaultMaxSplits : m["max_splits"].AsInt32();
const bool lowercase_input =
m["lowercase_input"].IsNull() ? true : m["lowercase_input"].AsBool();
return new NGramHashParams(seed, ngram_lengths, vocab_sizes, max_splits,
lowercase_input);
}
void Free(TfLiteContext* context, void* buffer) {
delete reinterpret_cast<NGramHashParams*>(buffer);
}
TfLiteStatus Resize(TfLiteContext* context, TfLiteNode* node) {
TfLiteTensor* output = tflite::GetOutput(context, node, kOutputLabel);
TF_LITE_ENSURE(context, output != nullptr);
tflite::SetTensorToDynamic(output);
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
NGramHashParams* params = reinterpret_cast<NGramHashParams*>(node->user_data);
TF_LITE_ENSURE_OK(
context, params->PreprocessInput(
tflite::GetInput(context, node, kInputMessage), context));
TfLiteTensor* output = tflite::GetOutput(context, node, kOutputLabel);
TF_LITE_ENSURE(context, output != nullptr);
if (tflite::IsDynamicTensor(output)) {
TfLiteIntArray* output_size = TfLiteIntArrayCreate(3);
output_size->data[0] = 1;
output_size->data[1] = params->GetNumNGrams();
output_size->data[2] = params->GetNumTokens();
TF_LITE_ENSURE_OK(context,
context->ResizeTensor(context, output, output_size));
} else {
context->ReportError(context, "Output must by dynamic.");
return kTfLiteError;
}
if (output->type == kTfLiteInt32) {
GetNGramHashIndices(params, output->data.i32);
} else {
context->ReportError(context, "Output type must be Int32.");
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace
TfLiteRegistration* Register_NGRAM_HASH() {
static TfLiteRegistration r = {Init, Free, Resize, Eval};
return &r;
}
} // namespace language_detection
|