1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/omnibox/browser/on_device_head_model.h"
#include <algorithm>
#include <cstring>
#include <fstream>
#include <list>
#include <memory>
#include "base/containers/heap_array.h"
#include "base/containers/span.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/strings/strcat.h"
#include "base/strings/string_util.h"
#include "base/strings/string_view_util.h"
#include "components/omnibox/browser/omnibox_field_trial.h"
namespace {
// The offset of the root node for the tree. The first two bytes is reserved to
// specify the size (num of bytes) of the address and the score in each node.
const int kRootNodeOffset = 2;
// A useful data structure to keep track of the tree nodes should be and have
// been visited during tree traversal.
struct MatchCandidate {
// The sequences of characters from the start node to current node.
std::string text;
// Whether the text above can be returned as a suggestion; if false it is the
// prefix of some other complete suggestion.
bool is_complete_suggestion;
// If is_complete_suggestion is true, this is the score for the suggestion;
// Otherwise it will be set as the maximum score for its sub tree.
uint32_t score;
// The address of the node in the model file. It is not required if
// is_complete_suggestion is true.
uint32_t address;
};
// Doubly linked list structure, which will be sorted based on candidates'
// scores (from low to high), to track nodes during tree search. We use two of
// this list to keep max_num_matches_to_return_ nodes in total with highest
// score during the search, and prune children and branches with low score.
// In theory, using RBTree might give a better search performance
// (i.e. log(n)) compared with linear from linked list here when inserting new
// candidates with high score into the struct, but since n is usually small,
// using linked list shall be okay.
using CandidateQueue = std::list<MatchCandidate>;
// A mini class holds all parameters needed to access the model on disk.
class OnDeviceModelParams {
public:
static std::unique_ptr<OnDeviceModelParams> Create(
const std::string& model_filename,
const uint32_t max_num_matches_to_return);
std::ifstream* GetModelFileStream() { return &model_filestream_; }
uint32_t score_size() const { return score_size_; }
uint32_t address_size() const { return address_size_; }
uint32_t max_num_matches_to_return() const {
return max_num_matches_to_return_;
}
~OnDeviceModelParams();
OnDeviceModelParams(const OnDeviceModelParams&) = delete;
OnDeviceModelParams& operator=(const OnDeviceModelParams&) = delete;
private:
OnDeviceModelParams() = default;
std::ifstream model_filestream_;
uint32_t score_size_;
uint32_t address_size_;
uint32_t max_num_matches_to_return_;
};
uint32_t ConvertCharSpanToInt(base::span<const char> chars) {
CHECK_LE(chars.size(), sizeof(uint32_t));
uint32_t result = 0;
for (uint32_t i = 0; i < chars.size(); ++i) {
result |= (chars[i] & 0xff) << (8 * i);
}
return result;
}
bool OpenModelFileStream(OnDeviceModelParams* params,
const std::string& model_filename,
const uint32_t start_address) {
if (model_filename.empty()) {
DVLOG(1) << "Model filename is empty";
return false;
}
// First close the file if it's still open.
if (params->GetModelFileStream()->is_open()) {
DVLOG(1) << "Previous file is still open";
params->GetModelFileStream()->close();
}
params->GetModelFileStream()->open(model_filename,
std::ios::in | std::ios::binary);
if (!params->GetModelFileStream()->is_open()) {
DVLOG(1) << "Failed to open model file from [" << model_filename << "]";
return false;
}
if (start_address > 0) {
params->GetModelFileStream()->seekg(start_address);
}
return true;
}
void MaybeCloseModelFileStream(OnDeviceModelParams* params) {
if (params->GetModelFileStream()->is_open()) {
params->GetModelFileStream()->close();
}
}
// Reads next num_bytes from the file stream.
bool ReadNext(OnDeviceModelParams* params, base::span<char> buf) {
uint32_t address = params->GetModelFileStream()->tellg();
params->GetModelFileStream()->read(buf.data(), buf.size());
if (params->GetModelFileStream()->fail()) {
DVLOG(1) << "On Device Head model: ifstream read error at address ["
<< address << "], when trying to read [" << buf.size()
<< "] bytes";
return false;
}
return true;
}
// Reads next num_bytes from the file stream but returns as an integer.
uint32_t ReadNextNumBytesAsInt(OnDeviceModelParams* params,
uint32_t num_bytes,
bool* is_successful) {
auto buf = base::HeapArray<char>::WithSize(num_bytes);
*is_successful = ReadNext(params, buf);
if (!*is_successful) {
return 0;
}
return ConvertCharSpanToInt(buf);
}
// Checks if size of score and size of address read from the model file are
// valid.
// For score, we use size of 2 bytes (15 bits), 3 bytes (23 bits) or 4 bytes
// (31 bits); For address, we use size of 3 bytes (23 bits) or 4 bytes
// (31 bits).
bool AreSizesValid(OnDeviceModelParams* params) {
bool is_score_size_valid =
(params->score_size() >= 2 && params->score_size() <= 4);
bool is_address_size_valid =
(params->address_size() >= 3 && params->address_size() <= 4);
if (!is_score_size_valid) {
DVLOG(1) << "On Device Head model: score size [" << params->score_size()
<< "] is not valid; valid size should 2, 3 or 4 bytes.";
}
if (!is_address_size_valid) {
DVLOG(1) << "On Device Head model: address size [" << params->address_size()
<< "] is not valid; valid size should be 3 or 4 bytes.";
}
return is_score_size_valid && is_address_size_valid;
}
void InsertCandidateToQueue(const MatchCandidate& candidate,
CandidateQueue* leaf_queue,
CandidateQueue* non_leaf_queue) {
CandidateQueue* queue_ptr =
candidate.is_complete_suggestion ? leaf_queue : non_leaf_queue;
if (queue_ptr->empty() || candidate.score > queue_ptr->back().score) {
queue_ptr->push_back(candidate);
} else {
auto iter = queue_ptr->begin();
for (; iter != queue_ptr->end() && candidate.score > iter->score; ++iter) {
}
queue_ptr->insert(iter, candidate);
}
}
uint32_t GetMinScoreFromQueues(OnDeviceModelParams* params,
const CandidateQueue& queue_1,
const CandidateQueue& queue_2) {
uint32_t min_score = 0x1 << (params->score_size() * 8 - 1);
if (!queue_1.empty()) {
min_score = std::min(min_score, queue_1.front().score);
}
if (!queue_2.empty()) {
min_score = std::min(min_score, queue_2.front().score);
}
return min_score;
}
// Reads block max_score_as_root at the beginning of the node from the given
// address. If there is a leaf score at the end of the block, return the leaf
// score using param leaf_candidate;
uint32_t ReadMaxScoreAsRoot(OnDeviceModelParams* params,
uint32_t address,
MatchCandidate* leaf_candidate,
bool* is_successful) {
if (is_successful == nullptr) {
DVLOG(1) << "On Device Head model: a boolean var is_successful is required "
<< "when calling function ReadMaxScoreAsRoot";
return 0;
}
params->GetModelFileStream()->seekg(address);
uint32_t max_score_block =
ReadNextNumBytesAsInt(params, params->score_size(), is_successful);
if (!*is_successful) {
return 0;
}
// The 1st bit is the indicator so removing it when rebuilding the max
// score as root.
uint32_t max_score = max_score_block >> 1;
// Read the leaf_score and set leaf_candidate when the indicator is 1.
if ((max_score_block & 0x1) == 0x1 && leaf_candidate != nullptr) {
uint32_t leaf_score =
ReadNextNumBytesAsInt(params, params->score_size(), is_successful);
if (!*is_successful) {
return 0;
}
leaf_candidate->score = leaf_score;
leaf_candidate->is_complete_suggestion = true;
}
return max_score;
}
// Reads a child block and move ifstream cursor to next child; returns false
// when reaching the end of the node or ifstream read error happens.
bool ReadNextChild(OnDeviceModelParams* params, MatchCandidate* candidate) {
if (candidate == nullptr) {
return false;
}
// Read block [length of text];
bool is_successful;
uint32_t text_length = ReadNextNumBytesAsInt(params, 1, &is_successful);
if (!is_successful) {
return false;
}
// This is the end of the node.
if (text_length == 0) {
return false;
}
// Read block [text].
auto text_buf = base::HeapArray<char>::WithSize(text_length);
if (!ReadNext(params, text_buf)) {
return false;
}
std::string text(base::as_string_view(text_buf));
// Append the text in this child such that the MatchCandidate object always
// contains the string representing the path from the root node to here.
candidate->text = base::StrCat({candidate->text, text});
// Read block [1 bit indicator + address/leaf_score]
// First read the 1 bit indicator.
char first_byte;
if (!ReadNext(params, base::span_from_ref(first_byte))) {
return false;
}
bool is_leaf_score = (first_byte & 0x1) == 0x0;
uint32_t length_of_leftover =
(is_leaf_score ? params->score_size() : params->address_size()) - 1;
auto leftover = base::HeapArray<char>::WithSize(length_of_leftover);
is_successful = ReadNext(params, leftover);
if (is_successful) {
auto last_block = base::HeapArray<char>::WithSize(length_of_leftover + 1);
last_block[0] = first_byte;
last_block.last(length_of_leftover).copy_from(leftover);
// Remove the 1 bit indicator when re-constructing the score/address.
uint32_t score_or_address = ConvertCharSpanToInt(last_block) >> 1;
if (is_leaf_score) {
// Address is not required for leaf child.
candidate->score = score_or_address;
candidate->is_complete_suggestion = true;
} else {
candidate->address = score_or_address;
candidate->is_complete_suggestion = false;
// TODO(crbug.com/40947213): remove this guard after evaluating the fix.
if (OmniboxFieldTrial::ShouldApplyOnDeviceHeadModelSelectionFix()) {
MatchCandidate unused_candidate;
uint32_t address = params->GetModelFileStream()->tellg();
uint32_t max_score = ReadMaxScoreAsRoot(
params, score_or_address, &unused_candidate, &is_successful);
params->GetModelFileStream()->seekg(address);
if (is_successful) {
candidate->score = max_score;
}
}
}
}
return is_successful;
}
// Reads tree node from given match candidate, convert all possible suggestions
// and children of this node into structure MatchCandidate.
std::vector<MatchCandidate> ReadTreeNode(OnDeviceModelParams* params,
const MatchCandidate& current) {
std::vector<MatchCandidate> candidates;
// The current candidate passed in is a leaf node and we shall stop here.
if (current.is_complete_suggestion) {
return candidates;
}
bool is_successful;
MatchCandidate leaf_candidate;
leaf_candidate.is_complete_suggestion = false;
uint32_t max_score_as_root = ReadMaxScoreAsRoot(
params, current.address, &leaf_candidate, &is_successful);
if (!is_successful) {
DVLOG(1) << "On Device Head model: read max_score_as_root failed at "
<< "address [" << current.address << "]";
return candidates;
}
// The max_score_as_root block may contain a leaf node which corresponds to a
// valid suggestion. Its score was set in function ReadMaxScoreAsRoot.
if (leaf_candidate.is_complete_suggestion) {
leaf_candidate.text = current.text;
candidates.push_back(leaf_candidate);
}
// Read child blocks until we reach the end of the node.
while (true) {
MatchCandidate candidate;
candidate.text = current.text;
candidate.score = max_score_as_root;
if (!ReadNextChild(params, &candidate)) {
break;
}
candidates.push_back(candidate);
}
return candidates;
}
// Finds start node which matches given prefix, returns true if found and the
// start node using param match_candidate.
bool FindStartNode(OnDeviceModelParams* params,
const std::string& prefix,
MatchCandidate* start_match) {
if (start_match == nullptr) {
return false;
}
start_match->text = "";
start_match->score = 0;
start_match->address = kRootNodeOffset;
start_match->is_complete_suggestion = false;
while (start_match->text.size() < prefix.size()) {
auto children = ReadTreeNode(params, *start_match);
bool has_match = false;
for (auto const& child : children) {
// The way we build the model ensures that there will be only one child
// matching the given prefix at each node.
if (!child.text.empty() &&
(base::StartsWith(child.text, prefix, base::CompareCase::SENSITIVE) ||
base::StartsWith(prefix, child.text,
base::CompareCase::SENSITIVE))) {
// A leaf only partially matching the given prefix cannot be the right
// start node.
if (child.is_complete_suggestion && child.text.size() < prefix.size()) {
continue;
}
start_match->text = child.text;
start_match->is_complete_suggestion = child.is_complete_suggestion;
start_match->score = child.score;
start_match->address = child.address;
has_match = true;
break;
}
}
if (!has_match) {
return false;
}
}
return start_match->text.size() >= prefix.size();
}
std::vector<std::pair<std::string, uint32_t>> DoSearch(
OnDeviceModelParams* params,
const MatchCandidate& start_match) {
std::vector<std::pair<std::string, uint32_t>> suggestions;
CandidateQueue leaf_queue, non_leaf_queue;
uint32_t min_score_in_queues = start_match.score;
InsertCandidateToQueue(start_match, &leaf_queue, &non_leaf_queue);
// Do the search until there is no non leaf candidates in the queue.
while (!non_leaf_queue.empty()) {
// Always fetch the intermediate node with highest score at the back of the
// queue.
auto next_candidates = ReadTreeNode(params, non_leaf_queue.back());
non_leaf_queue.pop_back();
min_score_in_queues =
GetMinScoreFromQueues(params, leaf_queue, non_leaf_queue);
for (const auto& candidate : next_candidates) {
if (candidate.score > min_score_in_queues ||
(leaf_queue.size() + non_leaf_queue.size() <
params->max_num_matches_to_return())) {
InsertCandidateToQueue(candidate, &leaf_queue, &non_leaf_queue);
}
// If there are too many candidates in the queues, remove the one with
// lowest score since it will never be shown to users.
if (leaf_queue.size() + non_leaf_queue.size() >
params->max_num_matches_to_return()) {
if (leaf_queue.empty() ||
(!non_leaf_queue.empty() &&
leaf_queue.front().score > non_leaf_queue.front().score)) {
non_leaf_queue.pop_front();
} else {
leaf_queue.pop_front();
}
}
min_score_in_queues =
GetMinScoreFromQueues(params, leaf_queue, non_leaf_queue);
}
}
while (!leaf_queue.empty()) {
suggestions.emplace_back(leaf_queue.back().text, leaf_queue.back().score);
leaf_queue.pop_back();
}
return suggestions;
}
} // namespace
// static
std::unique_ptr<OnDeviceModelParams> OnDeviceModelParams::Create(
const std::string& model_filename,
const uint32_t max_num_matches_to_return) {
std::unique_ptr<OnDeviceModelParams> params(new OnDeviceModelParams());
// TODO(crbug.com/40610979): Add DCHECK and code to report failures to UMA
// histogram.
if (!OpenModelFileStream(params.get(), model_filename, 0)) {
DVLOG(1) << "On Device Head Params: cannot access on device head params "
<< "instance because model file cannot be opened";
return nullptr;
}
char sizes[2];
if (!ReadNext(params.get(), sizes)) {
DVLOG(1) << "On Device Head Params: failed to read size information in the "
<< "first 2 bytes of the model file: " << model_filename;
return nullptr;
}
params->address_size_ = sizes[0];
params->score_size_ = sizes[1];
if (!AreSizesValid(params.get())) {
return nullptr;
}
params->max_num_matches_to_return_ = max_num_matches_to_return;
return params;
}
OnDeviceModelParams::~OnDeviceModelParams() {
if (model_filestream_.is_open()) {
model_filestream_.close();
}
}
// static
std::vector<std::pair<std::string, uint32_t>>
OnDeviceHeadModel::GetSuggestionsForPrefix(const std::string& model_filename,
uint32_t max_num_matches_to_return,
const std::string& prefix) {
std::vector<std::pair<std::string, uint32_t>> suggestions;
if (prefix.empty() || max_num_matches_to_return < 1) {
return suggestions;
}
std::unique_ptr<OnDeviceModelParams> params =
OnDeviceModelParams::Create(model_filename, max_num_matches_to_return);
if (params && params->GetModelFileStream()->is_open()) {
params->GetModelFileStream()->seekg(kRootNodeOffset);
MatchCandidate start_match;
if (FindStartNode(params.get(), prefix, &start_match)) {
suggestions = DoSearch(params.get(), start_match);
}
MaybeCloseModelFileStream(params.get());
}
return suggestions;
}
|