1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "components/omnibox/browser/on_device_tail_model_executor.h"
#include <cmath>
#include <cstdint>
#include <sstream>
#include <string_view>
#include "base/base64.h"
#include "base/containers/contains.h"
#include "base/files/file_util.h"
#include "base/hash/hash.h"
#include "base/logging.h"
#include "base/strings/strcat.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "components/omnibox/browser/omnibox_field_trial.h"
#include "components/optimization_guide/core/delivery/model_util.h"
#include "components/optimization_guide/core/tflite_op_resolver.h"
#include "third_party/tflite/src/tensorflow/lite/c/c_api_types.h"
#include "third_party/tflite/src/tensorflow/lite/kernels/register.h"
#include "third_party/tflite/src/tensorflow/lite/model_builder.h"
namespace {
// The names of the subgraphs.
static constexpr char kPreviousQueryEncoder[] = "context_encoder";
static constexpr char kRnnStep[] = "rnn_step";
// The names of input & output node.
static constexpr char kPrevQueryTokenIdsNodeName[] = "prev_query_token_ids";
static constexpr char kPrevQueryEncodingOutputNodeName[] =
"prev_query_encoding";
static constexpr char kRnnStepInputIdsNodeName[] = "input_ids";
static constexpr char kRnnStepPrevQueryEncodingInputNodeName[] =
"prev_query_encoding";
static constexpr std::string_view kRnnStepCStateInputNamePrefix = "c_in_";
static constexpr std::string_view kRnnStepMStateInputNamePrefix = "m_in_";
static constexpr std::string_view kRnnStepCStateOutputNamePrefix = "c_out_";
static constexpr std::string_view kRnnStepMStateOutputNamePrefix = "m_out_";
static constexpr char kRnnStepOutputProbsNodeName[] = "probs";
// Some default values of params needed to run the model.
static constexpr size_t kDefaultMaxNumSteps = 20;
static constexpr float kDefaultProbabilityThreshold = 0.01;
// The sizes of the caches.
static constexpr size_t kPreQueryEncodingCacheSize = 10;
static constexpr size_t kRnnStepOutputCacheSize = 20;
// Maximum file size that will be loaded in bytes.
static constexpr size_t kFileSizeLimit = 128 * 1024;
// Keywords to identify additional files needed by the executor.
static constexpr char kVocabFileNameKeyword[] = "vocab";
static constexpr char kBadwordHashesFileNameKeyword[] = "hashes";
static constexpr char kBadSubstringDenyListFileNameKeyword[] = "denylist";
std::ostream& operator<<(std::ostream& os,
const OnDeviceTailTokenizer::TokenIds& ids) {
if (ids.empty()) {
return os;
}
auto iter = ids.begin();
os << base::NumberToString(*iter);
++iter;
for (; iter != ids.end(); ++iter) {
os << ", " << base::NumberToString(*iter);
}
return os;
}
std::string LoadFileContent(const base::FilePath file_path) {
std::string content;
if (file_path.empty()) {
return content;
}
if (!base::ReadFileToStringWithMaxSize(file_path, &content, kFileSizeLimit)) {
DVLOG(1) << "Failed to read file: " << file_path.LossyDisplayName();
content.clear();
}
return content;
}
} // namespace
OnDeviceTailModelExecutor::ModelInput::ModelInput() = default;
OnDeviceTailModelExecutor::ModelInput::ModelInput(std::string prefix,
std::string previous_query,
size_t max_num_suggestions)
: prefix(std::move(prefix)),
previous_query(std::move(previous_query)),
max_num_suggestions(max_num_suggestions) {}
OnDeviceTailModelExecutor::RnnCellStates::RnnCellStates() = default;
OnDeviceTailModelExecutor::RnnCellStates::RnnCellStates(size_t num_layer,
size_t state_size) {
c_i = std::vector<std::vector<float>>(num_layer,
std::vector<float>(state_size));
m_i = std::vector<std::vector<float>>(num_layer,
std::vector<float>(state_size));
}
OnDeviceTailModelExecutor::RnnCellStates::RnnCellStates(
const RnnCellStates& other) = default;
OnDeviceTailModelExecutor::RnnCellStates::RnnCellStates(
RnnCellStates&& other) noexcept = default;
OnDeviceTailModelExecutor::RnnCellStates&
OnDeviceTailModelExecutor::RnnCellStates::operator=(
const RnnCellStates& other) = default;
OnDeviceTailModelExecutor::RnnCellStates&
OnDeviceTailModelExecutor::RnnCellStates::operator=(
RnnCellStates&& other) noexcept = default;
OnDeviceTailModelExecutor::RnnCellStates::~RnnCellStates() = default;
OnDeviceTailModelExecutor::RnnStepOutput::RnnStepOutput() = default;
OnDeviceTailModelExecutor::RnnStepOutput::RnnStepOutput(size_t num_layer,
size_t state_size,
size_t vocab_size)
: states(num_layer, state_size) {
probs = std::vector<float>(vocab_size, std::numeric_limits<float>::min());
}
OnDeviceTailModelExecutor::RnnStepOutput::RnnStepOutput(
const RnnStepOutput& other) {
probs = other.probs;
states = other.states;
}
OnDeviceTailModelExecutor::RnnStepOutput::~RnnStepOutput() = default;
OnDeviceTailModelExecutor::BeamNode::BeamNode() = default;
OnDeviceTailModelExecutor::BeamNode::BeamNode(int num_layer, int state_size)
: states(num_layer, state_size) {}
OnDeviceTailModelExecutor::BeamNode::BeamNode(const BeamNode& other) = default;
OnDeviceTailModelExecutor::BeamNode::BeamNode(BeamNode&& other) noexcept =
default;
OnDeviceTailModelExecutor::BeamNode&
OnDeviceTailModelExecutor::BeamNode::operator=(const BeamNode& other) = default;
OnDeviceTailModelExecutor::BeamNode&
OnDeviceTailModelExecutor::BeamNode::operator=(BeamNode&& other) noexcept =
default;
OnDeviceTailModelExecutor::BeamNode::~BeamNode() = default;
OnDeviceTailModelExecutor::OnDeviceTailModelExecutor()
: prev_query_cache_(kPreQueryEncodingCacheSize),
rnn_step_cache_(kRnnStepOutputCacheSize) {}
OnDeviceTailModelExecutor::~OnDeviceTailModelExecutor() = default;
bool OnDeviceTailModelExecutor::Init() {
executor_last_called_time_ = base::TimeTicks::Now();
Reset();
if (model_filepath_.empty() || vocab_filepath_.empty()) {
return false;
}
auto tokenizer = std::make_unique<OnDeviceTailTokenizer>();
tokenizer->Init(vocab_filepath_);
if (!tokenizer->IsReady()) {
DVLOG(1) << "Could not create tokenizer from file "
<< vocab_filepath_.LossyDisplayName();
vocab_filepath_.clear();
return false;
}
tokenizer_ = std::move(tokenizer);
if (!InitModelInterpreter(model_filepath_)) {
Reset();
model_filepath_.clear();
return false;
}
state_size_ = metadata_.lstm_model_params().state_size();
num_layer_ = metadata_.lstm_model_params().num_layer();
embedding_dimension_ = metadata_.lstm_model_params().embedding_dimension();
if (metadata_.lstm_model_params().max_num_steps() > 0) {
max_num_steps_ = metadata_.lstm_model_params().max_num_steps();
} else {
max_num_steps_ = kDefaultMaxNumSteps;
}
if (metadata_.lstm_model_params().probability_threshold() > 0) {
log_probability_threshold_ = GetLogProbability(
metadata_.lstm_model_params().probability_threshold());
} else {
log_probability_threshold_ =
GetLogProbability(kDefaultProbabilityThreshold);
}
vocab_size_ = tokenizer_->vocab_size();
LoadBadSubstringSet();
LoadBadwordHashSet();
return true;
}
bool OnDeviceTailModelExecutor::Init(
const base::FilePath& model_filepath,
const base::flat_set<base::FilePath>& additional_files,
const ModelMetadata& metadata) {
base::FilePath vocab_filepath, badword_hashes_filepath,
bad_substrings_filepath;
for (const base::FilePath& file_path : additional_files) {
if (!file_path.empty()) {
std::string file_path_str =
optimization_guide::FilePathToString(file_path);
if (base::Contains(file_path_str, kVocabFileNameKeyword)) {
vocab_filepath = file_path;
} else if (base::Contains(file_path_str, kBadwordHashesFileNameKeyword)) {
badword_hashes_filepath = file_path;
} else if (base::Contains(file_path_str,
kBadSubstringDenyListFileNameKeyword)) {
bad_substrings_filepath = file_path;
}
}
}
if (model_filepath.empty() || vocab_filepath.empty()) {
return false;
}
model_filepath_ = model_filepath;
vocab_filepath_ = vocab_filepath;
badword_hashes_filepath_ = badword_hashes_filepath;
bad_substrings_filepath_ = bad_substrings_filepath;
metadata_ = metadata;
if (Init()) {
return true;
}
model_filepath_.clear();
vocab_filepath_.clear();
badword_hashes_filepath_.clear();
bad_substrings_filepath_.clear();
return false;
}
bool OnDeviceTailModelExecutor::InitModelInterpreter(
const base::FilePath& model_filepath) {
auto model_fb = std::make_unique<base::MemoryMappedFile>();
if (!model_fb->Initialize(model_filepath)) {
DVLOG(1) << "Could not load model into memory from path "
<< model_filepath.LossyDisplayName();
return false;
}
model_fb_ = std::move(model_fb);
std::unique_ptr<tflite::FlatBufferModel> model =
tflite::FlatBufferModel::VerifyAndBuildFromBuffer(
reinterpret_cast<const char*>(model_fb_->data()),
model_fb_->length());
if (model == nullptr) {
DVLOG(1) << "Could not create flat buffer model for file "
<< model_filepath.LossyDisplayName();
return false;
}
optimization_guide::TFLiteOpResolver resolver;
if (tflite::InterpreterBuilder(*model, resolver)(&interpreter_) !=
kTfLiteOk) {
DVLOG(1) << "Could not create on device tail model interpreter!";
return false;
}
prev_query_encoder_ = interpreter_->GetSignatureRunner(kPreviousQueryEncoder);
if (prev_query_encoder_ == nullptr) {
DVLOG(1) << "Could not create signature runner context_encoder";
return false;
}
if (prev_query_encoder_->AllocateTensors() != kTfLiteOk) {
DVLOG(1) << "Could not allocate tensors for previous query encoder";
return false;
}
rnn_step_ = interpreter_->GetSignatureRunner(kRnnStep);
if (rnn_step_ == nullptr) {
DVLOG(1) << "Could not create signature runner rnn_step";
return false;
}
if (rnn_step_->AllocateTensors() != kTfLiteOk) {
DVLOG(1) << "Could not allocate tenors for rnn step";
return false;
}
return true;
}
bool OnDeviceTailModelExecutor::EncodePreviousQuery(
const OnDeviceTailTokenizer::TokenIds& prev_query_token_ids,
std::vector<float>* prev_query_encoding) {
auto iter = prev_query_cache_.Get(prev_query_token_ids);
if (iter != prev_query_cache_.end()) {
*prev_query_encoding = iter->second;
return true;
}
DCHECK(prev_query_encoder_);
DCHECK(prev_query_encoding);
// Resizes the input tensor for previous query encoder as the input size is
// not fixed.
if (kTfLiteOk != prev_query_encoder_->ResizeInputTensor(
kPrevQueryTokenIdsNodeName,
{1, static_cast<int>(prev_query_token_ids.size())})) {
DVLOG(1)
<< "Could not resize input tensor for prev query encoder to length "
<< prev_query_token_ids.size();
return false;
}
if (kTfLiteOk != prev_query_encoder_->AllocateTensors()) {
DVLOG(1) << "Could not allocate tensors for prev query encoder after "
<< "resizing";
return false;
}
// Input: type INT32, shape [1, previous query length]
TfLiteTensor* input_tensor =
prev_query_encoder_->input_tensor(kPrevQueryTokenIdsNodeName);
for (size_t i = 0; i < prev_query_token_ids.size(); ++i) {
input_tensor->data.i32[i] = prev_query_token_ids[i];
}
if (prev_query_encoder_->Invoke() != kTfLiteOk) {
DVLOG(1) << "Could not invoke prev query encoder";
return false;
}
// Output: type FLOAT32, shape [1, embedding_dimension_]
auto* output_tensor =
prev_query_encoder_->output_tensor(kPrevQueryEncodingOutputNodeName);
TfLiteIntArray* dims = output_tensor->dims;
if (dims->size != 2 || dims->data[0] != 1 ||
dims->data[1] != static_cast<int>(embedding_dimension_)) {
DVLOG(1) << "Wrong embedding dimension for previous query encoder";
return false;
}
if (prev_query_encoding->size() != embedding_dimension_) {
prev_query_encoding->resize(embedding_dimension_);
}
for (size_t i = 0; i < embedding_dimension_; ++i) {
prev_query_encoding->at(i) = output_tensor->data.f[i];
}
prev_query_cache_.Put(prev_query_token_ids, *prev_query_encoding);
return true;
}
void OnDeviceTailModelExecutor::ResetCaches() {
prev_query_cache_.Clear();
rnn_step_cache_.Clear();
}
void OnDeviceTailModelExecutor::LoadBadSubstringSet() {
bad_substrings_.clear();
std::string content = LoadFileContent(bad_substrings_filepath_);
if (content.empty()) {
return;
}
std::string bad_substring, line;
std::stringstream file_content(content);
while (std::getline(file_content, line)) {
if (line.empty()) {
break;
}
if (base::Base64Decode(line, &bad_substring)) {
bad_substrings_.insert(bad_substring);
} else {
DVLOG(1) << "Could not decode line: " << line;
}
}
}
void OnDeviceTailModelExecutor::LoadBadwordHashSet() {
badword_hashes_.clear();
std::string content = LoadFileContent(badword_hashes_filepath_);
if (content.empty()) {
return;
}
std::string hash_string;
std::stringstream badword_hash_strings(content);
while (std::getline(badword_hash_strings, hash_string)) {
if (hash_string.empty()) {
break;
}
uint32_t hash_int;
if (base::StringToUint(hash_string, &hash_int)) {
badword_hashes_.insert(hash_int);
}
}
}
bool OnDeviceTailModelExecutor::IsSuggestionBad(const std::string& suggestion) {
if (suggestion.empty()) {
return false;
}
for (const std::string& substring : bad_substrings_) {
if (base::Contains(suggestion, substring)) {
return true;
}
}
if (!badword_hashes_.empty()) {
std::vector<std::string> words =
base::SplitString(suggestion, base::kWhitespaceASCII,
base::TRIM_WHITESPACE, base::SPLIT_WANT_NONEMPTY);
for (const std::string& word : words) {
auto hash_value = base::PersistentHash(word);
if (base::Contains(badword_hashes_, hash_value)) {
return true;
}
}
}
return false;
}
void OnDeviceTailModelExecutor::Reset() {
ResetCaches();
model_fb_ = nullptr;
tokenizer_ = nullptr;
prev_query_encoder_ = nullptr;
rnn_step_ = nullptr;
interpreter_ = nullptr;
}
bool OnDeviceTailModelExecutor::RunRnnStep(
const OnDeviceTailTokenizer::TokenIds& rnn_step_cache_key,
const OnDeviceTailTokenizer::TokenId& input_id,
const std::vector<float>& prev_query_encoding,
const RnnCellStates& previous_states,
RnnStepOutput* rnn_step_output) {
const auto iter = rnn_step_cache_.Get(rnn_step_cache_key);
if (iter != rnn_step_cache_.end()) {
*rnn_step_output = iter->second;
return true;
}
DCHECK(rnn_step_);
TfLiteTensor* input_tensor;
// Feed current token ID.
input_tensor = rnn_step_->input_tensor(kRnnStepInputIdsNodeName);
input_tensor->data.i32[0] = input_id;
// Feed previous query encoding.
input_tensor =
rnn_step_->input_tensor(kRnnStepPrevQueryEncodingInputNodeName);
for (size_t i = 0; i < prev_query_encoding.size(); ++i) {
input_tensor->data.f[i] = prev_query_encoding[i];
}
// Feed c states.
for (size_t i = 0; i < num_layer_; ++i) {
std::string node_name =
base::StrCat({kRnnStepCStateInputNamePrefix, base::NumberToString(i)});
input_tensor = rnn_step_->input_tensor(node_name.c_str());
for (size_t j = 0; j < state_size_; ++j) {
input_tensor->data.f[j] = previous_states.c_i[i][j];
}
}
// Feed m states.
for (size_t i = 0; i < num_layer_; ++i) {
std::string node_name =
base::StrCat({kRnnStepMStateInputNamePrefix, base::NumberToString(i)});
input_tensor = rnn_step_->input_tensor(node_name.c_str());
for (size_t j = 0; j < state_size_; ++j) {
input_tensor->data.f[j] = previous_states.m_i[i][j];
}
}
if (kTfLiteOk != rnn_step_->Invoke()) {
DVLOG(1) << "Could not invoke RNN step runner";
return false;
}
RnnStepOutput output(num_layer_, state_size_, vocab_size_);
const TfLiteTensor* output_tensor;
output_tensor = rnn_step_->output_tensor(kRnnStepOutputProbsNodeName);
// Fetch output probabilities.
for (size_t i = 0; i < vocab_size_; ++i) {
output.probs[i] = output_tensor->data.f[i];
}
// Fetch c states.
for (size_t i = 0; i < num_layer_; ++i) {
std::string node_name =
base::StrCat({kRnnStepCStateOutputNamePrefix, base::NumberToString(i)});
output_tensor = rnn_step_->output_tensor(node_name.c_str());
for (size_t j = 0; j < state_size_; ++j) {
output.states.c_i[i][j] = output_tensor->data.f[j];
}
}
// Fetch m states.
for (size_t i = 0; i < num_layer_; ++i) {
std::string node_name =
base::StrCat({kRnnStepMStateOutputNamePrefix, base::NumberToString(i)});
output_tensor = rnn_step_->output_tensor(node_name.c_str());
for (size_t j = 0; j < state_size_; ++j) {
output.states.m_i[i][j] = output_tensor->data.f[j];
}
}
rnn_step_cache_.Put(rnn_step_cache_key, output);
*rnn_step_output = std::move(output);
return true;
}
void OnDeviceTailModelExecutor::CreateNewBeams(
const RnnStepOutput& rnn_step_output,
const BeamNode& current_beam,
size_t max_num_suggestions,
float log_prob_threshold,
CandidateQueue* partial_candidates,
CandidateQueue* completed_candidates) {
DCHECK(partial_candidates && completed_candidates);
if (current_beam.log_prob < log_prob_threshold) {
return;
}
if (current_beam.constraint_prefix.empty()) {
for (OnDeviceTailTokenizer::TokenId token_id = 0;
static_cast<size_t>(token_id) < rnn_step_output.probs.size();
++token_id) {
CandidateQueue* queue = tokenizer_->IsEndQueryTokenId(token_id)
? completed_candidates
: partial_candidates;
InsertBeamNodeToCandidateQueue(
{token_id, rnn_step_output.probs[token_id]}, rnn_step_output.states,
current_beam, log_prob_threshold, max_num_suggestions, queue);
}
return;
}
// If constraint prefix is set, normalize the probabilities of the matching
// tokens.
// Given the sum of the probability for tokens matching constraint prefix, the
// normalized probability is:
// prob[i]_normalized = prob[i] / sum_constraint_prob, where
// sum_constraint_prob = sum(prob[i]) for i-th token which matches the
// constraint prefix.
float sum_constraint_prob = 0;
std::vector<TokenIdAndProb> candidates;
for (OnDeviceTailTokenizer::TokenId token_id = 0;
static_cast<size_t>(token_id) < rnn_step_output.probs.size();
++token_id) {
if (!base::StartsWith(tokenizer_->IdToToken(token_id),
current_beam.constraint_prefix,
base::CompareCase::SENSITIVE)) {
continue;
}
sum_constraint_prob += rnn_step_output.probs[token_id];
candidates.emplace_back(token_id, rnn_step_output.probs[token_id]);
}
for (const auto& token_id_and_prob : candidates) {
InsertBeamNodeToCandidateQueue(
{token_id_and_prob.first,
token_id_and_prob.second / sum_constraint_prob},
rnn_step_output.states, current_beam, log_prob_threshold,
max_num_suggestions, partial_candidates);
}
return;
}
void OnDeviceTailModelExecutor::InsertBeamNodeToCandidateQueue(
const TokenIdAndProb& token_id_and_prob,
const RnnCellStates& states,
const BeamNode& current_beam,
float log_prob_threshold,
size_t max_num_suggestions,
CandidateQueue* queue) {
DCHECK(queue);
BeamNode node;
node.log_prob =
current_beam.log_prob + GetLogProbability(token_id_and_prob.second);
if (node.log_prob < log_prob_threshold) {
return;
}
const OnDeviceTailTokenizer::TokenId& new_token_id = token_id_and_prob.first;
// Drop the candidate if the given token cannot be properly displayed to
// users, unless it is the end query token.
if (!(tokenizer_->IsEndQueryTokenId(new_token_id) ||
tokenizer_->IsTokenPrintable(new_token_id))) {
return;
}
// Check if there are enough candidates in the queue and drop the lowest
// probability candidate from the queue if needed.
if (queue->size() >= max_num_suggestions) {
if (node.log_prob <= queue->top().log_prob) {
return;
}
queue->pop();
}
node.token_ids = current_beam.token_ids;
node.token_ids.emplace_back(new_token_id);
node.rnn_step_cache_key = current_beam.rnn_step_cache_key;
node.rnn_step_cache_key.emplace_back(new_token_id);
node.states = states;
queue->emplace(std::move(node));
}
bool OnDeviceTailModelExecutor::GetRootBeamNode(
const OnDeviceTailTokenizer::Tokenization& input_tokenization,
const OnDeviceTailTokenizer::TokenIds& prev_query_token_ids,
std::vector<float>* prev_query_encoding,
BeamNode* root_beam) {
DCHECK(prev_query_encoding);
if (!EncodePreviousQuery(prev_query_token_ids, prev_query_encoding)) {
return false;
}
DCHECK(root_beam);
root_beam->rnn_step_cache_key = prev_query_token_ids;
root_beam->token_ids.clear();
RnnStepOutput rnn_step_output(num_layer_, state_size_, vocab_size_);
for (size_t i = 0; i < input_tokenization.unambiguous_ids.size() - 1; ++i) {
const OnDeviceTailTokenizer::TokenId& token_id =
input_tokenization.unambiguous_ids[i];
root_beam->rnn_step_cache_key.emplace_back(token_id);
root_beam->token_ids.emplace_back(token_id);
if (!RunRnnStep(root_beam->rnn_step_cache_key, token_id,
*prev_query_encoding, rnn_step_output.states,
&rnn_step_output)) {
return false;
}
}
// Force the input id of the next RNN step invocation to be the last
// unambiguous token of the given prefix.
root_beam->rnn_step_cache_key.emplace_back(
input_tokenization.unambiguous_ids.back());
root_beam->token_ids.emplace_back(input_tokenization.unambiguous_ids.back());
root_beam->constraint_prefix = input_tokenization.constraint_prefix;
root_beam->states = std::move(rnn_step_output.states);
root_beam->log_prob = 0.0;
return true;
}
// static
float OnDeviceTailModelExecutor::GetLogProbability(float probability) {
return probability > 0 ? std::log(probability)
: std::numeric_limits<float>::min();
}
std::vector<OnDeviceTailModelExecutor::Prediction>
OnDeviceTailModelExecutor::GenerateSuggestionsForPrefix(
const ModelInput& input) {
executor_last_called_time_ = base::TimeTicks::Now();
DCHECK(IsReady());
std::vector<Prediction> predictions;
// Only trigger for prefixed suggest requests.
if (input.prefix.empty()) {
return predictions;
}
// Return early if the prefix contains bad words.
// TODO(crbug.com/40241602): maybe add a unit test for this.
if (IsSuggestionBad(input.prefix)) {
return predictions;
}
OnDeviceTailTokenizer::Tokenization input_tokenization;
tokenizer_->CreatePrefixTokenization(input.prefix, &input_tokenization);
OnDeviceTailTokenizer::TokenIds prev_query_token_ids;
tokenizer_->TokenizePrevQuery(input.previous_query, &prev_query_token_ids);
std::vector<float> prev_query_encoding;
BeamNode root_beam;
if (!GetRootBeamNode(input_tokenization, prev_query_token_ids,
&prev_query_encoding, &root_beam)) {
DVLOG(1) << "Failed to get root beam node for prefix [" << input.prefix
<< "][" << input.previous_query << "]";
return predictions;
}
OnDeviceTailModelExecutor::CandidateQueue partial_candidates,
completed_candidates;
partial_candidates.emplace(std::move(root_beam));
for (size_t i = 0; i < max_num_steps_; ++i) {
if (partial_candidates.empty()) {
break;
}
std::vector<BeamNode> beam_nodes;
while (!partial_candidates.empty()) {
beam_nodes.emplace_back(std::move(partial_candidates.top()));
partial_candidates.pop();
}
for (const auto& beam : beam_nodes) {
RnnStepOutput rnn_step_output;
if (RunRnnStep(beam.rnn_step_cache_key, beam.token_ids.back(),
prev_query_encoding, beam.states, &rnn_step_output)) {
CreateNewBeams(rnn_step_output, beam, input.max_num_suggestions,
log_probability_threshold_, &partial_candidates,
&completed_candidates);
} else {
DVLOG(1) << "Failed to run RNN step for cache key: "
<< beam.rnn_step_cache_key;
}
}
}
// Construct predictions from the beam node stored in the completed queue.
for (; !completed_candidates.empty(); completed_candidates.pop()) {
const BeamNode& beam = completed_candidates.top();
if (beam.token_ids.size() < 3 ||
!tokenizer_->IsBeginQueryTokenId(beam.token_ids.front()) ||
!tokenizer_->IsEndQueryTokenId(beam.token_ids.back())) {
DVLOG(1) << "Illegal prediction: " << beam.token_ids;
continue;
}
std::string suggestion;
// Skip the first leading space (i.e. the second token) if it is explicitly
// added during encoding. Note the first token is always the begin query
// token.
size_t index;
if (OmniboxFieldTrial::ShouldEncodeLeadingSpaceForOnDeviceTailSuggest()) {
index = 2;
} else {
index = 1;
}
for (; index < beam.token_ids.size() - 1; ++index) {
suggestion += tokenizer_->IdToToken(beam.token_ids[index]);
}
// Remove echo suggestion.
if (suggestion == input.prefix) {
continue;
}
if (IsSuggestionBad(suggestion)) {
continue;
}
Prediction prediction;
prediction.suggestion = suggestion;
prediction.probability = std::exp(beam.log_prob);
predictions.emplace_back(std::move(prediction));
}
// Reverse the predictions vector as it shall be returned in the descending
// order of probability.
std::reverse(predictions.begin(), predictions.end());
return predictions;
}
|