File: scored_history_match.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (1079 lines) | stat: -rw-r--r-- 49,453 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/omnibox/browser/scored_history_match.h"

#include <math.h>

#include <algorithm>
#include <array>
#include <optional>
#include <string>
#include <utility>
#include <vector>

#include "base/check_op.h"
#include "base/no_destructor.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_offset_string_conversions.h"
#include "base/strings/utf_string_conversions.h"
#include "base/time/time.h"
#include "components/bookmarks/browser/bookmark_utils.h"
#include "components/omnibox/browser/autocomplete_match.h"
#include "components/omnibox/browser/history_url_provider.h"
#include "components/omnibox/browser/in_memory_url_index_types.h"
#include "components/omnibox/browser/omnibox_field_trial.h"
#include "components/omnibox/browser/url_prefix.h"
#include "components/omnibox/common/string_cleaning.h"
#include "url/gurl.h"
#include "url/third_party/mozilla/url_parse.h"

namespace {

// The number of days of recency scores to precompute.
const int kDaysToPrecomputeRecencyScoresFor = 366;

// The number of raw term score buckets use; raw term scores greater this are
// capped at the score of the largest bucket.
const int kMaxRawTermScore = 30;

// Pre-computed information to speed up calculating recency scores.
// |days_ago_to_recency_score| is a simple array mapping how long ago a page was
// visited (in days) to the recency score we should assign it.  This allows easy
// lookups of scores without requiring math. This is initialized by
// InitDaysAgoToRecencyScoreArray called by
// ScoredHistoryMatch::Init().
std::array<float, kDaysToPrecomputeRecencyScoresFor> days_ago_to_recency_score;

// Pre-computed information to speed up calculating topicality scores.
// |raw_term_score_to_topicality_score| is a simple array mapping how raw terms
// scores (a weighted sum of the number of hits for the term, weighted by how
// important the hit is: hostname, path, etc.) to the topicality score we should
// assign it.  This allows easy lookups of scores without requiring math. This
// is initialized by InitRawTermScoreToTopicalityScoreArray() called from
// ScoredHistoryMatch::Init().
std::array<float, kMaxRawTermScore> raw_term_score_to_topicality_score;

// Precalculates raw_term_score_to_topicality_score, used in
// GetTopicalityScore().
void InitRawTermScoreToTopicalityScoreArray() {
  for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) {
    float topicality_score;
    if (term_score < 10) {
      // If the term scores less than 10 points (no full-credit hit, or
      // no combination of hits that score that well), then the topicality
      // score is linear in the term score.
      topicality_score = 0.1 * term_score;
    } else {
      // For term scores of at least ten points, pass them through a log
      // function so a score of 10 points gets a 1.0 (to meet up exactly
      // with the linear component) and increases logarithmically until
      // maxing out at 30 points, with computes to a score around 2.1.
      topicality_score = (1.0 + 2.25 * log10(0.1 * term_score));
    }
    raw_term_score_to_topicality_score[term_score] = topicality_score;
  }
}

// Pre-calculates days_ago_to_recency_score, used in GetRecencyScore().
void InitDaysAgoToRecencyScoreArray() {
  for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor;
       days_ago++) {
    int unnormalized_recency_score;
    if (days_ago <= 4) {
      unnormalized_recency_score = 100;
    } else if (days_ago <= 14) {
      // Linearly extrapolate between 4 and 14 days so 14 days has a score
      // of 70.
      unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4);
    } else if (days_ago <= 31) {
      // Linearly extrapolate between 14 and 31 days so 31 days has a score
      // of 50.
      unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14);
    } else if (days_ago <= 90) {
      // Linearly extrapolate between 30 and 90 days so 90 days has a score
      // of 30.
      unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30);
    } else {
      // Linearly extrapolate between 90 and 365 days so 365 days has a score
      // of 10.
      unnormalized_recency_score =
          10 + (365 - days_ago) * (20 - 10) / (365 - 90);
    }
    days_ago_to_recency_score[days_ago] = unnormalized_recency_score / 100.0;
    if (days_ago > 0) {
      DCHECK_LE(days_ago_to_recency_score[days_ago],
                days_ago_to_recency_score[days_ago - 1]);
    }
  }
}

}  // namespace

// static
bool ScoredHistoryMatch::also_do_hup_like_scoring_;
float ScoredHistoryMatch::bookmark_value_;
float ScoredHistoryMatch::typed_value_;
size_t ScoredHistoryMatch::max_visits_to_score_;
bool ScoredHistoryMatch::allow_tld_matches_;
bool ScoredHistoryMatch::allow_scheme_matches_;
size_t ScoredHistoryMatch::num_title_words_to_allow_;
float ScoredHistoryMatch::topicality_threshold_;
ScoredHistoryMatch::ScoreMaxRelevances*
    ScoredHistoryMatch::relevance_buckets_override_ = nullptr;
OmniboxFieldTrial::NumMatchesScores*
    ScoredHistoryMatch::matches_to_specificity_override_ = nullptr;

ScoredHistoryMatch::ScoredHistoryMatch()
    : ScoredHistoryMatch(history::URLRow(),
                         VisitInfoVector(),
                         std::u16string(),
                         String16Vector(),
                         WordStarts(),
                         RowWordStarts(),
                         false,
                         1,
                         false,
                         base::Time::Max()) {}

ScoredHistoryMatch::ScoredHistoryMatch(
    const history::URLRow& row,
    const VisitInfoVector& visits,
    const std::u16string& lower_string,
    const String16Vector& terms_vector,
    const WordStarts& terms_to_word_starts_offsets,
    const RowWordStarts& word_starts,
    bool is_url_bookmarked,
    size_t num_matching_pages,
    bool is_highly_visited_host,
    base::Time now) {
  // Initialize HistoryMatch fields. TODO(tommycli): Merge these two classes.
  url_info = row;
  input_location = 0;
  match_in_scheme = false;
  match_in_subdomain = false;
  innermost_match = false;

  // NOTE: Call Init() before doing any validity checking to ensure that the
  // class is always initialized after an instance has been constructed. In
  // particular, this ensures that the class is initialized after an instance
  // has been constructed via the no-args constructor.
  ScoredHistoryMatch::Init();

  if (OmniboxFieldTrial::IsPopulatingUrlScoringSignalsEnabled()) {
    // Populate the scoring signals available in the URL Row.
    scoring_signals = std::make_optional<ScoringSignals>();
    scoring_signals->set_typed_count(row.typed_count());
    scoring_signals->set_visit_count(row.visit_count());
    base::TimeDelta elapsed_time = now - row.last_visit();
    scoring_signals->set_elapsed_time_last_visit_secs(elapsed_time.InSeconds());
    scoring_signals->set_is_host_only(IsHostOnly());
    scoring_signals->set_length_of_url(row.url().spec().length());
  }

  // Figure out where each search term appears in the URL and/or page title
  // so that we can score as well as provide autocomplete highlighting.
  base::OffsetAdjuster::Adjustments adjustments;
  GURL gurl = row.url();
  std::u16string cleaned_up_url_for_matching =
      string_cleaning::CleanUpUrlForMatching(gurl, &adjustments);
  std::u16string title = string_cleaning::CleanUpTitleForMatching(row.title());
  int term_num = 0;
  for (const auto& term : terms_vector) {
    TermMatches url_term_matches =
        MatchTermInString(term, cleaned_up_url_for_matching, term_num);
    TermMatches title_term_matches = MatchTermInString(term, title, term_num);
    if (url_term_matches.empty() && title_term_matches.empty()) {
      // A term was not found in either URL or title - reject.
      return;
    }
    url_matches.insert(url_matches.end(), url_term_matches.begin(),
                       url_term_matches.end());
    title_matches.insert(title_matches.end(), title_term_matches.begin(),
                         title_term_matches.end());
    ++term_num;
  }

  // Sort matches by offset, which is needed for GetTopicalityScore() to
  // function correctly.
  url_matches = SortMatches(url_matches);
  title_matches = SortMatches(title_matches);

  // We can likely inline autocomplete a match if:
  //  1) there is only one search term
  //  2) AND the match begins immediately after one of the prefixes in
  //     URLPrefix such as http://www and https:// (note that one of these
  //     is the empty prefix, for cases where the user has typed the scheme)
  //  3) AND the search string does not end in whitespace (making it look to
  //     the IMUI as though there is a single search term when actually there
  //     is a second, empty term).
  // |best_inlineable_prefix| stores the inlineable prefix computed in
  // clause (2) or NULL if no such prefix exists.  (The URL is not inlineable.)
  // Note that using the best prefix here means that when multiple
  // prefixes match, we'll choose to inline following the longest one.
  // For a URL like "http://www.washingtonmutual.com", this means
  // typing "w" will inline "ashington..." instead of "ww.washington...".
  // We cannot be sure about inlining at this stage because this test depends
  // on the cleaned up URL, which is not necessarily the same as the URL string
  // used in HistoryQuick provider to construct the match.  For instance, the
  // cleaned up URL has special characters unescaped so as to allow matches
  // with them.  This aren't unescaped when HistoryQuick displays the URL;
  // hence a match in the URL that involves matching the unescaped special
  // characters may not be able to be inlined given how HistoryQuick displays
  // it.  This happens in HistoryQuickProvider::QuickMatchToACMatch().
  bool likely_can_inline = false;
  if (!url_matches.empty() && (terms_vector.size() == 1) &&
      !base::IsUnicodeWhitespace(*lower_string.rbegin())) {
    const std::u16string gurl_spec = base::UTF8ToUTF16(gurl.spec());
    const URLPrefix* best_inlineable_prefix =
        URLPrefix::BestURLPrefix(gurl_spec, terms_vector[0]);
    if (best_inlineable_prefix) {
      // When inline autocompleting this match, we're going to use the part of
      // the URL following the end of the matching text.  However, it's possible
      // that FormatUrl(), when formatting this suggestion for display,
      // mucks with the text.  We need to ensure that the text we're thinking
      // about highlighting isn't in the middle of a mucked sequence.  In
      // particular, for the omnibox input of "x" or "xn", we may get a match
      // in a punycoded domain name such as http://www.xn--blahblah.com/.
      // When FormatUrl() processes the xn--blahblah part of the hostname, it'll
      // transform the whole thing into a series of unicode characters.  It's
      // impossible to give the user an inline autocompletion of the text
      // following "x" or "xn" in this case because those characters no longer
      // exist in the displayed URL string.
      size_t offset =
          best_inlineable_prefix->prefix.length() + terms_vector[0].length();
      base::OffsetAdjuster::UnadjustOffset(adjustments, &offset);
      if (offset != std::u16string::npos) {
        // Initialize innermost_match.
        // The idea here is that matches that occur in the scheme or
        // "www." are worse than matches which don't.  For the URLs
        // "http://www.google.com" and "http://wellsfargo.com", we want
        // the omnibox input "w" to cause the latter URL to rank higher
        // than the former.  Note that this is not the same as checking
        // whether one match's inlinable prefix has more components than
        // the other match's, since in this example, both matches would
        // have an inlinable prefix of "http://", which is one component.
        //
        // Instead, we look for the overall best (i.e., most components)
        // prefix of the current URL, and then check whether the inlinable
        // prefix has that many components.  If it does, this is an
        // "innermost" match, and should be boosted.  In the example
        // above, the best prefixes for the two URLs have two and one
        // components respectively, while the inlinable prefixes each
        // have one component; this means the first match is not innermost
        // and the second match is innermost, resulting in us boosting the
        // second match.
        //
        // Now, the code that implements this.
        // The deepest prefix for this URL regardless of where the match is.
        const URLPrefix* best_prefix =
            URLPrefix::BestURLPrefix(gurl_spec, std::u16string());
        DCHECK(best_prefix);
        // If the URL is likely to be inlineable, we must have a match.  Note
        // the prefix that makes it inlineable may be empty.
        likely_can_inline = true;
        innermost_match = (best_inlineable_prefix->num_components ==
                           best_prefix->num_components);
      }
    }
  }

  // Calculate the score per `topicality_score`, `frequency_score`, and
  // `specificity_score`.
  const float topicality_score =
      GetTopicalityScore(terms_vector.size(), gurl, adjustments,
                         terms_to_word_starts_offsets, word_starts);
  float frequency_score = 0, specificity_score = 0;
  if (topicality_score > 0) {
    // No need to calculate these intermediates; when `topicality_score` is 0,
    // they'll be unused.
    frequency_score = GetFrequency(now, is_url_bookmarked, visits);
    specificity_score = GetDocumentSpecificityScore(num_matching_pages);
  }
  raw_score_before_domain_boosting =
      base::saturated_cast<int>(GetFinalRelevancyScore(
          topicality_score, frequency_score, specificity_score, 1));

  // Calculate the score considering `domain_score` as well (if enabled).
  static float domain_suggestions_score_factor =
      OmniboxFieldTrial::kDomainSuggestionsScoreFactor.Get();
  DCHECK_GE(domain_suggestions_score_factor, 1);
  const float domain_score =
      is_highly_visited_host ? domain_suggestions_score_factor : 1;
  raw_score_after_domain_boosting =
      domain_score > 1 ? base::saturated_cast<int>(GetFinalRelevancyScore(
                             topicality_score, frequency_score,
                             specificity_score, domain_score))
                       : raw_score_before_domain_boosting;
  DCHECK(domain_score > 1 ? raw_score_before_domain_boosting <=
                                raw_score_after_domain_boosting
                          : raw_score_before_domain_boosting ==
                                raw_score_after_domain_boosting);

  // Calculate the score using an alternative domain scoring (if enabled).
  static bool domain_suggestions_alternative_scoring =
      OmniboxFieldTrial::kDomainSuggestionsAlternativeScoring.Get();
  if (is_highly_visited_host && domain_suggestions_alternative_scoring) {
    raw_score_after_domain_boosting =
        std::max(GetDomainRelevancyScore(now), raw_score_after_domain_boosting);
  }

  // If the domain suggestions feature is CF enabled, use the un-boosted score;
  // if non-CF enabled, use the boosted score; and if disabled, it doesn't
  // matter as the scores are equal.
  static const bool domain_suggestions_counterfactual =
      OmniboxFieldTrial::kDomainSuggestionsCounterfactual.Get();
  raw_score = domain_suggestions_counterfactual
                  ? raw_score_before_domain_boosting
                  : raw_score_after_domain_boosting;

  if (also_do_hup_like_scoring_ && likely_can_inline) {
    // HistoryURL-provider-like scoring gives any match that is
    // capable of being inlined a certain minimum score.  Some of these
    // are given a higher score that lets them be shown in inline.
    // This test here derives from the test in
    // HistoryURLProvider::PromoteMatchForInlineAutocomplete().
    const bool promote_to_inline =
        (row.typed_count() > 1) || (IsHostOnly() && (row.typed_count() == 1));
    int hup_like_score =
        promote_to_inline
            ? HistoryURLProvider::kScoreForBestInlineableResult
            : HistoryURLProvider::kBaseScoreForNonInlineableResult;

    // Also, if the user types the hostname of a host with a typed
    // visit, then everything from that host get given inlineable scores
    // (because the URL-that-you-typed will go first and everything
    // else will be assigned one minus the previous score, as coded
    // at the end of HistoryURLProvider::DoAutocomplete().
    if (base::UTF8ToUTF16(gurl.host()) == terms_vector[0])
      hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult;

    // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion()
    // that's meant to promote prefixes of the best match (if they've
    // been visited enough related to the best match) or
    // create/promote host-only suggestions (even if they've never
    // been typed).  The code is complicated and we don't try to
    // duplicate the logic here.  Instead, we handle a simple case: in
    // low-typed-count ranges, give host-only matches (i.e.,
    // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so
    // that the host-only match outscores all the other matches that
    // would normally have the same base score.  This behavior is not
    // identical to what happens in HistoryURLProvider even in these
    // low typed count ranges--sometimes it will create/promote when
    // this test does not (indeed, we cannot create matches like HUP
    // can) and vice versa--but the underlying philosophy is similar.
    if (!promote_to_inline && IsHostOnly())
      hup_like_score++;

    // All the other logic to goes into hup-like-scoring happens in
    // the tie-breaker case of MatchScoreGreater().

    // Incorporate hup_like_score into raw_score.
    raw_score = std::max(raw_score, hup_like_score);
  }

  url_matches = DeoverlapMatches(url_matches);
  title_matches = DeoverlapMatches(title_matches);

  // Now that we're done processing this entry, correct the offsets of the
  // matches in |url_matches| so they point to offsets in the original URL
  // spec, not the cleaned-up URL string that we used for matching.
  std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches);
  base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets);
  url_matches = ReplaceOffsetsInTermMatches(url_matches, offsets);

  // Now that url_matches contains the unadjusted offsets referring to the
  // original URL, we can calculate which components the matches are for.
  std::vector<AutocompleteMatch::MatchPosition> match_positions;
  for (auto& url_match : url_matches) {
    match_positions.push_back(
        std::make_pair(url_match.offset, url_match.offset + url_match.length));
  }
  AutocompleteMatch::GetMatchComponents(gurl, match_positions, &match_in_scheme,
                                        &match_in_subdomain);
}

ScoredHistoryMatch::ScoredHistoryMatch(const ScoredHistoryMatch& other) =
    default;
ScoredHistoryMatch::ScoredHistoryMatch(ScoredHistoryMatch&& other) = default;
ScoredHistoryMatch& ScoredHistoryMatch::operator=(
    const ScoredHistoryMatch& other) = default;
ScoredHistoryMatch& ScoredHistoryMatch::operator=(ScoredHistoryMatch&& other) =
    default;
ScoredHistoryMatch::~ScoredHistoryMatch() = default;

// Comparison function for sorting ScoredMatches by their scores with
// intelligent tie-breaking.
bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1,
                                           const ScoredHistoryMatch& m2) {
  if (m1.raw_score != m2.raw_score)
    return m1.raw_score > m2.raw_score;

  // This tie-breaking logic is inspired by / largely copied from the
  // ordering logic in history_url_provider.cc CompareHistoryMatch().

  // A URL that has been typed at all is better than one that has never been
  // typed.  (Note "!"s on each side.)
  if (!m1.url_info.typed_count() != !m2.url_info.typed_count())
    return m1.url_info.typed_count() > m2.url_info.typed_count();

  // Innermost matches (matches after any scheme or "www.") are better than
  // non-innermost matches.
  if (m1.innermost_match != m2.innermost_match)
    return m1.innermost_match;

  // URLs that have been typed more often are better.
  if (m1.url_info.typed_count() != m2.url_info.typed_count())
    return m1.url_info.typed_count() > m2.url_info.typed_count();

  // For URLs that have each been typed once, a host (alone) is better
  // than a page inside.
  if (m1.url_info.typed_count() == 1) {
    if (m1.IsHostOnly() != m2.IsHostOnly())
      return m1.IsHostOnly();
  }

  // URLs that have been visited more often are better.
  if (m1.url_info.visit_count() != m2.url_info.visit_count())
    return m1.url_info.visit_count() > m2.url_info.visit_count();

  // URLs that have been visited more recently are better.
  return m1.url_info.last_visit() > m2.url_info.last_visit();
}

// static
TermMatches ScoredHistoryMatch::FilterUrlTermMatches(
    const WordStarts& terms_to_word_starts_offsets,
    const GURL& url,
    const WordStarts& url_word_starts,
    const base::OffsetAdjuster::Adjustments& adjustments,
    const TermMatches& url_matches) {
  const url::Parsed& parsed = url.parsed_for_possibly_invalid_spec();
  size_t host_pos = parsed.CountCharactersBefore(url::Parsed::HOST, true);
  size_t path_pos = parsed.CountCharactersBefore(url::Parsed::PATH, true);
  size_t query_pos = parsed.CountCharactersBefore(url::Parsed::QUERY, true);
  size_t last_part_of_host_pos =
      url.possibly_invalid_spec().rfind('.', path_pos);

  // |word_starts| and |url_matches| both contain offsets for the cleaned up
  // URL used for matching, so we have to follow those adjustments.
  base::OffsetAdjuster::AdjustOffset(adjustments, &host_pos);
  base::OffsetAdjuster::AdjustOffset(adjustments, &path_pos);
  base::OffsetAdjuster::AdjustOffset(adjustments, &query_pos);
  base::OffsetAdjuster::AdjustOffset(adjustments, &last_part_of_host_pos);

  // Filter all matches not at a word boundary and in the path (or
  // later).
  TermMatches filtered_matches = FilterTermMatchesByWordStarts(
      url_matches, terms_to_word_starts_offsets, url_word_starts, path_pos,
      std::string::npos, true);
  if (url.has_scheme()) {
    // Also filter matches not at a word boundary and in the scheme.
    filtered_matches = FilterTermMatchesByWordStarts(
        filtered_matches, terms_to_word_starts_offsets, url_word_starts, 0,
        host_pos, true);
  }
  return filtered_matches;
}

// static
ScoredHistoryMatch::UrlMatchingSignals
ScoredHistoryMatch::ComputeUrlMatchingSignals(
    const WordStarts& terms_to_word_starts_offsets,
    const GURL& url,
    const WordStarts& url_word_starts,
    const base::OffsetAdjuster::Adjustments& adjustments,
    const TermMatches& url_matches) {
  auto next_word_starts = url_word_starts.begin();
  auto end_word_starts = url_word_starts.end();

  const url::Parsed& parsed = url.parsed_for_possibly_invalid_spec();
  size_t host_pos = parsed.CountCharactersBefore(url::Parsed::HOST, true);
  size_t path_pos = parsed.CountCharactersBefore(url::Parsed::PATH, true);
  size_t query_pos = parsed.CountCharactersBefore(url::Parsed::QUERY, true);
  size_t last_part_of_host_pos =
      url.possibly_invalid_spec().rfind('.', path_pos);

  // Get end position for 'www'. Not set if 'www' does not exist in the host
  // component.
  std::optional<size_t> www_end_pos;
  if (host_pos + 3 <= url.spec().length() &&
      base::ToLowerASCII(url.spec().substr(host_pos, 3)).compare("www") == 0) {
    www_end_pos = host_pos + 2;
  }

  // |word_starts| and |url_matches| both contain offsets for the cleaned up
  // URL used for matching, so we have to follow those adjustments.
  base::OffsetAdjuster::AdjustOffset(adjustments, &host_pos);
  base::OffsetAdjuster::AdjustOffset(adjustments, &path_pos);
  base::OffsetAdjuster::AdjustOffset(adjustments, &query_pos);
  base::OffsetAdjuster::AdjustOffset(adjustments, &last_part_of_host_pos);
  if (www_end_pos.has_value()) {
    size_t end_pos = *www_end_pos;
    base::OffsetAdjuster::AdjustOffset(adjustments, &end_pos);
    www_end_pos = end_pos;
  }

  std::optional<bool> host_match_at_word_boundary = std::nullopt;
  std::optional<bool> has_non_scheme_www_match = std::nullopt;
  std::optional<size_t> first_url_match_position = std::nullopt;
  size_t total_url_match_length = 0;
  size_t total_host_match_length = 0;
  size_t total_path_match_length = 0;
  size_t total_query_or_ref_match_length = 0;
  size_t num_input_terms_matched_by_url = 0;

  if (!url_matches.empty()) {
    // URL matches are sorted by offsets.
    first_url_match_position = url_matches[0].offset;
  }
  num_input_terms_matched_by_url = CountUniqueMatchTerms(url_matches);

  for (const auto& url_match : url_matches) {
    // Calculate the offset in the URL string where the meaningful (word) part
    // of the term starts.  This takes into account times when a term starts
    // with punctuation such as "/foo".
    const size_t term_word_offset =
        url_match.offset + terms_to_word_starts_offsets[url_match.term_num];
    // Advance next_word_starts until it's >= the position of the term we're
    // considering (adjusted for where the word begins within the term).
    while ((next_word_starts != end_word_starts) &&
           (*next_word_starts < term_word_offset)) {
      ++next_word_starts;
    }
    const bool at_word_boundary = (next_word_starts != end_word_starts) &&
                                  (*next_word_starts == term_word_offset);
    if (term_word_offset >= query_pos) {
      // The match is in the query or ref component.
      total_query_or_ref_match_length += url_match.length;
    } else if (term_word_offset >= path_pos) {
      // The match is in the path component.
      total_path_match_length += url_match.length;
    } else if (term_word_offset >= host_pos) {
      if (host_match_at_word_boundary.has_value()) {
        host_match_at_word_boundary =
            *host_match_at_word_boundary || at_word_boundary;
      } else {
        host_match_at_word_boundary = at_word_boundary;
      }
      if (has_non_scheme_www_match.has_value()) {
        has_non_scheme_www_match = *has_non_scheme_www_match ||
                                   !www_end_pos.has_value() ||
                                   (term_word_offset > *www_end_pos);
      } else {
        has_non_scheme_www_match =
            !www_end_pos.has_value() || (term_word_offset > *www_end_pos);
      }
      total_host_match_length += url_match.length;
    }
    total_url_match_length += url_match.length;
  }

  UrlMatchingSignals matching_signals = {
      host_match_at_word_boundary,     has_non_scheme_www_match,
      first_url_match_position,        total_url_match_length,
      total_host_match_length,         total_path_match_length,
      total_query_or_ref_match_length, num_input_terms_matched_by_url};

  return matching_signals;
}

// static
TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts(
    const TermMatches& term_matches,
    const WordStarts& terms_to_word_starts_offsets,
    const WordStarts& word_starts,
    size_t start_pos,
    size_t end_pos,
    bool allow_midword_continuations) {
  // Return early if no filtering is needed.
  if (start_pos == std::string::npos)
    return term_matches;
  TermMatches filtered_matches;
  auto next_word_starts = word_starts.begin();
  auto end_word_starts = word_starts.end();
  size_t last_end = 0;
  for (const auto& term_match : term_matches) {
    const size_t term_offset =
        terms_to_word_starts_offsets[term_match.term_num];
    // Advance next_word_starts until it's >= the position of the term we're
    // considering (adjusted for where the word begins within the term).
    while ((next_word_starts != end_word_starts) &&
           (*next_word_starts < (term_match.offset + term_offset)))
      ++next_word_starts;
    // Add the match if it's (1) before the position we start filtering at, (2)
    // after the position we stop filtering at (assuming we have a position
    // to stop filtering at), (3) at a word boundary, (4) void of words (e.g.
    // the term '-' contains no words), or, (5) if allow_midword_continuations
    // is true, continues where the previous match left off (e.g. inputs such
    // as 'stack overflow' will match text such as 'stackoverflow').
    if (term_match.offset < start_pos ||
        (end_pos != std::string::npos && term_match.offset >= end_pos) ||
        (next_word_starts != end_word_starts &&
         *next_word_starts == term_match.offset + term_offset) ||
        term_offset == term_match.length ||
        (allow_midword_continuations && term_match.offset == last_end)) {
      last_end = term_match.offset + term_match.length;
      filtered_matches.push_back(term_match);
    }
  }
  return filtered_matches;
}

// static
size_t ScoredHistoryMatch::ComputeTotalMatchLength(
    const WordStarts& terms_to_word_starts_offsets,
    const TermMatches& matches,
    const WordStarts& word_starts,
    size_t num_words_to_allow) {
  int total_match_length = 0;
  auto next_word_starts = word_starts.begin();
  auto end_word_starts = word_starts.end();
  size_t word_num = 0;
  for (const auto& match : matches) {
    // Calculate the offset in the title string where the meaningful (word) part
    // of the term starts.  This takes into account times when a term starts
    // with punctuation such as "/foo".
    const size_t term_word_offset =
        match.offset + terms_to_word_starts_offsets[match.term_num];
    // Advance next_word_starts until it's >= the position of the term we're
    // considering (adjusted for where the word begins within the term).
    while ((next_word_starts != end_word_starts) &&
           (*next_word_starts < term_word_offset)) {
      ++next_word_starts;
      ++word_num;
    }

    // Only count up to the number of allowed words.
    if (word_num >= num_words_to_allow) {
      break;
    }
    total_match_length += match.length;
  }
  return total_match_length;
}

// static
size_t ScoredHistoryMatch::CountUniqueMatchTerms(
    const TermMatches& term_matches) {
  // Find unique `term_num`s in term_matches
  std::set<int> unique_term_nums;
  for (const auto& match : term_matches) {
    unique_term_nums.insert(match.term_num);
  }
  return unique_term_nums.size();
}

// static
void ScoredHistoryMatch::Init() {
  static bool initialized = false;

  if (initialized)
    return;

  initialized = true;
  also_do_hup_like_scoring_ = OmniboxFieldTrial::HQPAlsoDoHUPLikeScoring();
  bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue();
  typed_value_ = OmniboxFieldTrial::HQPTypedValue();
  max_visits_to_score_ = OmniboxFieldTrial::HQPMaxVisitsToScore();
  allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue();
  allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue();
  num_title_words_to_allow_ = OmniboxFieldTrial::HQPNumTitleWordsToAllow();
  topicality_threshold_ =
      OmniboxFieldTrial::HQPExperimentalTopicalityThreshold();

  InitRawTermScoreToTopicalityScoreArray();
  InitDaysAgoToRecencyScoreArray();
}

float ScoredHistoryMatch::GetTopicalityScore(
    const int num_terms,
    const GURL& url,
    const base::OffsetAdjuster::Adjustments& adjustments,
    const WordStarts& terms_to_word_starts_offsets,
    const RowWordStarts& word_starts) {
  // A vector that accumulates per-term scores.  The strongest match--a
  // match in the hostname at a word boundary--is worth 10 points.
  // Everything else is less.  In general, a match that's not at a word
  // boundary is worth about 1/4th or 1/5th of a match at the word boundary
  // in the same part of the URL/title.
  DCHECK_GT(num_terms, 0);
  std::vector<int> term_scores(num_terms, 0);

  // Process term matches in the URL.
  url_matches = FilterUrlTermMatches(terms_to_word_starts_offsets, url,
                                     word_starts.url_word_starts_, adjustments,
                                     url_matches);
  IncrementUrlMatchTermScores(terms_to_word_starts_offsets, url,
                              word_starts.url_word_starts_, adjustments,
                              &term_scores);

  // Process term matches in the title.
  title_matches = FilterTermMatchesByWordStarts(
      title_matches, terms_to_word_starts_offsets,
      word_starts.title_word_starts_, 0, std::string::npos, true);
  IncrementTitleMatchTermScores(terms_to_word_starts_offsets,
                                word_starts.title_word_starts_, &term_scores);

  if (OmniboxFieldTrial::IsPopulatingUrlScoringSignalsEnabled()) {
    // Url matching signals.
    const auto url_matching_signals = ComputeUrlMatchingSignals(
        terms_to_word_starts_offsets, url, word_starts.url_word_starts_,
        adjustments, url_matches);
    if (url_matching_signals.first_url_match_position.has_value()) {
      // Not set if there is no URL match.
      scoring_signals->set_first_url_match_position(
          *(url_matching_signals.first_url_match_position));
    }
    if (url_matching_signals.host_match_at_word_boundary.has_value()) {
      // Not set if there is no match in the host.
      scoring_signals->set_host_match_at_word_boundary(
          *(url_matching_signals.host_match_at_word_boundary));
      scoring_signals->set_has_non_scheme_www_match(
          *(url_matching_signals.has_non_scheme_www_match));
    }
    scoring_signals->set_total_url_match_length(
        url_matching_signals.total_url_match_length);
    scoring_signals->set_total_host_match_length(
        url_matching_signals.total_host_match_length);
    scoring_signals->set_total_path_match_length(
        url_matching_signals.total_path_match_length);
    scoring_signals->set_total_query_or_ref_match_length(
        url_matching_signals.total_query_or_ref_match_length);
    scoring_signals->set_num_input_terms_matched_by_url(
        url_matching_signals.num_input_terms_matched_by_url);

    // Title matching signals.
    size_t total_title_match_length = ComputeTotalMatchLength(
        terms_to_word_starts_offsets, title_matches,
        word_starts.title_word_starts_, num_title_words_to_allow_);
    scoring_signals->set_total_title_match_length(total_title_match_length);
    scoring_signals->set_num_input_terms_matched_by_title(
        CountUniqueMatchTerms(title_matches));
  }

  // TODO(mpearson): Restore logic for penalizing out-of-order matches.
  // (Perhaps discount them by 0.8?)
  // TODO(mpearson): Consider: if the earliest match occurs late in the string,
  // should we discount it?
  // TODO(mpearson): Consider: do we want to score based on how much of the
  // input string the input covers?  (I'm leaning toward no.)

  // Compute the topicality_score as the sum of transformed term_scores.
  float topicality_score = 0;
  for (int term_score : term_scores) {
    topicality_score += raw_term_score_to_topicality_score[std::min(
        term_score, kMaxRawTermScore - 1)];
  }
  // TODO(mpearson): If there are multiple terms, consider taking the
  // geometric mean of per-term scores rather than the arithmetic mean.

  const float final_topicality_score = topicality_score / num_terms;

  // Demote the URL if the topicality score is less than threshold.
  if (final_topicality_score < topicality_threshold_) {
    return 0.0;
  }

  return final_topicality_score;
}

void ScoredHistoryMatch::IncrementUrlMatchTermScores(
    const WordStarts& terms_to_word_starts_offsets,
    const GURL& url,
    const WordStarts& url_word_starts,
    const base::OffsetAdjuster::Adjustments& adjustments,
    std::vector<int>* term_scores) {
  auto next_word_starts = url_word_starts.begin();
  auto end_word_starts = url_word_starts.end();

  const url::Parsed& parsed = url.parsed_for_possibly_invalid_spec();
  size_t host_pos = parsed.CountCharactersBefore(url::Parsed::HOST, true);
  size_t path_pos = parsed.CountCharactersBefore(url::Parsed::PATH, true);
  size_t query_pos = parsed.CountCharactersBefore(url::Parsed::QUERY, true);
  size_t last_part_of_host_pos =
      url.possibly_invalid_spec().rfind('.', path_pos);

  // |word_starts| and |url_matches| both contain offsets for the cleaned up
  // URL used for matching, so we have to follow those adjustments.
  base::OffsetAdjuster::AdjustOffset(adjustments, &host_pos);
  base::OffsetAdjuster::AdjustOffset(adjustments, &path_pos);
  base::OffsetAdjuster::AdjustOffset(adjustments, &query_pos);
  base::OffsetAdjuster::AdjustOffset(adjustments, &last_part_of_host_pos);

  for (const auto& url_match : url_matches) {
    // Calculate the offset in the URL string where the meaningful (word) part
    // of the term starts.  This takes into account times when a term starts
    // with punctuation such as "/foo".
    const size_t term_word_offset =
        url_match.offset + terms_to_word_starts_offsets[url_match.term_num];
    // Advance next_word_starts until it's >= the position of the term we're
    // considering (adjusted for where the word begins within the term).
    while ((next_word_starts != end_word_starts) &&
           (*next_word_starts < term_word_offset)) {
      ++next_word_starts;
    }
    const bool at_word_boundary = (next_word_starts != end_word_starts) &&
                                  (*next_word_starts == term_word_offset);
    if (term_word_offset >= query_pos) {
      // The match is in the query or ref component.
      if (term_scores) {
        (*term_scores)[url_match.term_num] += 5;
      }
    } else if (term_word_offset >= path_pos) {
      // The match is in the path component.
      if (term_scores) {
        (*term_scores)[url_match.term_num] += 8;
      }
    } else if (term_word_offset >= host_pos) {
      if (term_scores) {
        if (term_word_offset < last_part_of_host_pos) {
          // Either there are no dots in the hostname or this match isn't
          // the last dotted component.
          (*term_scores)[url_match.term_num] += at_word_boundary ? 10 : 2;
        } else {
          // The match is in the last part of a dotted hostname (usually this
          // is the top-level domain .com, .net, etc.).
          if (allow_tld_matches_) {
            (*term_scores)[url_match.term_num] += at_word_boundary ? 10 : 0;
          }
        }
      }
    } else {
      // The match is in the protocol (a.k.a. scheme).
      // Matches not at a word boundary should have been filtered already.
      if (allow_scheme_matches_ && term_scores) {
        (*term_scores)[url_match.term_num] += 10;
      }
    }
  }
}

void ScoredHistoryMatch::IncrementTitleMatchTermScores(
    const WordStarts& terms_to_word_starts_offsets,
    const WordStarts& title_word_starts,
    std::vector<int>* term_scores) {
  auto next_word_starts = title_word_starts.begin();
  auto end_word_starts = title_word_starts.end();
  size_t word_num = 0;
  for (const auto& title_match : title_matches) {
    // Calculate the offset in the title string where the meaningful (word) part
    // of the term starts.  This takes into account times when a term starts
    // with punctuation such as "/foo".
    const size_t term_word_offset =
        title_match.offset + terms_to_word_starts_offsets[title_match.term_num];
    // Advance next_word_starts until it's >= the position of the term we're
    // considering (adjusted for where the word begins within the term).
    while ((next_word_starts != end_word_starts) &&
           (*next_word_starts < term_word_offset)) {
      ++next_word_starts;
      ++word_num;
    }
    if (word_num >= num_title_words_to_allow_) {
      break;  // only count the first ten words
    }
    if (term_scores &&
        term_scores->size() > static_cast<size_t>(title_match.term_num)) {
      (*term_scores)[title_match.term_num] += 8;
    }
  }
}

float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) const {
  // Lookup the score in days_ago_to_recency_score, treating
  // everything older than what we've precomputed as the oldest thing
  // we've precomputed.  The std::max is to protect against corruption
  // in the database (in case last_visit_days_ago is negative).
  return days_ago_to_recency_score[std::max(
      std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), 0)];
}

float ScoredHistoryMatch::GetFrequency(const base::Time& now,
                                       const bool bookmarked,
                                       const VisitInfoVector& visits) const {
  // Compute the weighted sum of |value_of_transition| over the last at most
  // |max_visits_to_score_| visits, where each visit is weighted using
  // GetRecencyScore() based on how many days ago it happened.
  //
  // Here are example frequency scores, assuming |max_visits_to_score_| is 10.
  // - a single typed visit more than three months ago, no other visits -> 0.45
  //   ( = 1.5 typed visit score * 0.3 recency score)
  // - a single visit recently -> 1.0
  //   ( = 1.0 visit score * 1.0 recency score)
  // - a single typed visit recently -> 1.5
  //   ( = 1.5 typed visit score * 1.0 recency score)
  // - 10+ visits, once every three days, no typed visits -> about 7.5
  //   ( 10+ visits, averaging about 0.75 recency score each)
  // - 10+ typed visits, once a week -> about 7.5
  //   ( 10+ visits, average of 1.5 typed visit score * 0.5 recency score)
  // - 10+ visit, once every day, no typed visits -> about 9.0
  //   ( 10+ visits, average about 0.9 recency score each)
  // - 10+ typed visit, once every three days -> about 11
  //   ( 10+ visits, averaging about 1.5 typed visit *  0.75 recency score each)
  // - 10+ typed visits today -> 15
  //   ( 10+ visits, each worth 1.5 typed visit score)
  float summed_visit_points = 0;
  auto visits_end =
      visits.begin() + std::min(visits.size(), max_visits_to_score_);
  // Visits should be in newest to oldest order.
  DCHECK(std::ranges::adjacent_find(visits.begin(), visits_end, std::less<>(),
                                    &history::VisitInfo::first) == visits_end);
  for (auto i = visits.begin(); i != visits_end; ++i) {
    const bool is_page_transition_typed =
        ui::PageTransitionCoreTypeIs(i->second, ui::PAGE_TRANSITION_TYPED);
    float value_of_transition = is_page_transition_typed ? typed_value_ : 1;
    if (bookmarked)
      value_of_transition = std::max(value_of_transition, bookmark_value_);
    const float bucket_weight = GetRecencyScore((now - i->first).InDays());
    summed_visit_points += (value_of_transition * bucket_weight);
  }
  return summed_visit_points;
}

float ScoredHistoryMatch::GetDocumentSpecificityScore(
    size_t num_matching_pages) const {
  // A mapping from the number of matching pages to their associated document
  // specificity scores.  See omnibox_field_trial.h for more details.
  static base::NoDestructor<OmniboxFieldTrial::NumMatchesScores>
      default_matches_to_specificity(OmniboxFieldTrial::HQPNumMatchesScores());
  OmniboxFieldTrial::NumMatchesScores* matches_to_specificity =
      matches_to_specificity_override_ ? matches_to_specificity_override_
                                       : default_matches_to_specificity.get();

  // The floating point value below must be less than the lowest score the
  // server would send down.
  OmniboxFieldTrial::NumMatchesScores::const_iterator it = std::upper_bound(
      matches_to_specificity->begin(), matches_to_specificity->end(),
      std::pair<size_t, double>{num_matching_pages, -1});
  return (it != matches_to_specificity->end()) ? it->second : 1.0;
}

// static
float ScoredHistoryMatch::GetFinalRelevancyScore(float topicality_score,
                                                 float frequency_score,
                                                 float specificity_score,
                                                 float domain_score) {
  // |relevance_buckets| gives a mapping from intermediate score to the final
  // relevance score.
  static base::NoDestructor<ScoreMaxRelevances> default_relevance_buckets(
      GetHQPBuckets());
  ScoreMaxRelevances* relevance_buckets = relevance_buckets_override_
                                              ? relevance_buckets_override_
                                              : default_relevance_buckets.get();
  DCHECK(!relevance_buckets->empty());
  DCHECK_EQ(0.0, (*relevance_buckets)[0].first);

  if (topicality_score == 0) {
    DCHECK_EQ(frequency_score, 0);
    DCHECK_EQ(specificity_score, 0);
    return 0;
  }

  // Compute an intermediate score by multiplying the topicality, specificity,
  // and frequency scores, then map it to the range [0, 1399].  For typical
  // ranges, remember:
  // * topicality score is usually around 1.0; typical range is [0.5, 2.5].
  //   1.0 is the value assigned when a single-term input matches in the
  //   hostname.  For more details, see GetTopicalityScore().
  // * specificity score is usually 1.0; typical range is [1.0, 3.0].
  //   1.0 is the default value when the user's input matches many documents.
  //   For more details, see GetDocumentSpecificityScore().
  // * frequency score has a much wider range depending on the number of
  //   visits; typical range is [0.3, 15.0].  For more details, see
  //   GetFrequency().
  //
  // The default scoring buckets: "0.0:550,1:625,9.0:1300,90.0:1399"
  // will linearly interpolate the scores between:
  //      0.0 to 1.0  --> 550 to 625
  //      1.0 to 9.0  --> 625 to 1300
  //      9.0 to 90.0 --> 1300 to 1399
  //      >= 90.0     --> 1399
  //
  // The score maxes out at 1399 (i.e., cannot beat a good inlineable result
  // from HistoryURL provider).
  const float intermediate_score =
      topicality_score * frequency_score * specificity_score * domain_score;

  // Find the threshold where intermediate score is greater than bucket.
  size_t i = 1;
  for (; i < relevance_buckets->size(); ++i) {
    const ScoreMaxRelevance& bucket = (*relevance_buckets)[i];
    if (intermediate_score >= bucket.first) {
      continue;
    }
    const ScoreMaxRelevance& previous_bucket = (*relevance_buckets)[i - 1];
    const float slope = ((bucket.second - previous_bucket.second) /
                         (bucket.first - previous_bucket.first));
    return (previous_bucket.second +
            (slope * (intermediate_score - previous_bucket.first)));
  }
  // It will reach this stage when the score is > highest bucket score.
  // Return the highest bucket score.
  return (*relevance_buckets)[i - 1].second;
}

// static
std::vector<ScoredHistoryMatch::ScoreMaxRelevance>
ScoredHistoryMatch::GetHQPBuckets() {
  std::string relevance_buckets_str =
      OmniboxFieldTrial::HQPExperimentalScoringBuckets();
  static constexpr char kDefaultHQPBuckets[] =
      "0.0:550,1:625,9.0:1300,90.0:1399";
  if (relevance_buckets_str.empty())
    relevance_buckets_str = kDefaultHQPBuckets;
  return GetHQPBucketsFromString(relevance_buckets_str);
}

// static
ScoredHistoryMatch::ScoreMaxRelevances
ScoredHistoryMatch::GetHQPBucketsFromString(const std::string& buckets_str) {
  DCHECK(!buckets_str.empty());
  base::StringPairs kv_pairs;
  if (!base::SplitStringIntoKeyValuePairs(buckets_str, ':', ',', &kv_pairs))
    return ScoreMaxRelevances();
  ScoreMaxRelevances hqp_buckets;
  for (base::StringPairs::const_iterator it = kv_pairs.begin();
       it != kv_pairs.end(); ++it) {
    ScoreMaxRelevance bucket;
    bool is_valid_intermediate_score =
        base::StringToDouble(it->first, &bucket.first);
    DCHECK(is_valid_intermediate_score);
    bool is_valid_hqp_score = base::StringToInt(it->second, &bucket.second);
    DCHECK(is_valid_hqp_score);
    hqp_buckets.push_back(bucket);
  }
  return hqp_buckets;
}

int ScoredHistoryMatch::GetDomainRelevancyScore(base::Time now) const {
  // Domain scores consider only the last visit time as they're intended for
  // pages the user hasn't yet visited many times. The goal is to score them
  // highly enough to surface but not so high they constantly displace
  // traditional suggestions. Otherwise, for inputs matching a highly visited
  // domain, domain suggestions would overwhelm all other suggestions. Besides,
  // if scored conservatively, they'll still be boosted by traditional scores
  // after they're selected.

  // For simplicity, score them linearly: 1000 - 80 / day.
  // 80 because (1000-200) / (10-0) = 80.
  constexpr int max_score = 1000;
  constexpr int min_score = 200;
  constexpr auto demote_start = base::Days(0);
  constexpr auto demote_end = base::Days(10);

  auto elapsed = now - url_info.last_visit();

  // If visited more recently than `demote_start`, return `max_score`.
  if (elapsed <= demote_start)
    return max_score;
  // If visited less recently than `demote_end`, return 0 (not `min_score`).
  if (elapsed >= demote_end)
    return 0;
  // Otherwise, linearly interpolate `max_score` and `min_score`.
  return max_score - (elapsed - demote_start) / (demote_end - demote_start) *
                         (max_score - min_score);
}