File: model_handler.h

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (387 lines) | stat: -rw-r--r-- 16,204 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef COMPONENTS_OPTIMIZATION_GUIDE_CORE_INFERENCE_MODEL_HANDLER_H_
#define COMPONENTS_OPTIMIZATION_GUIDE_CORE_INFERENCE_MODEL_HANDLER_H_

#include <optional>

#include "base/callback_list.h"
#include "base/functional/bind.h"
#include "base/functional/callback_forward.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/metrics/histogram.h"
#include "base/metrics/histogram_functions.h"
#include "base/sequence_checker.h"
#include "base/task/cancelable_task_tracker.h"
#include "base/task/sequenced_task_runner.h"
#include "base/time/time.h"
#include "base/timer/elapsed_timer.h"
#include "base/types/optional_ref.h"
#include "components/optimization_guide/core/delivery/model_util.h"
#include "components/optimization_guide/core/delivery/optimization_guide_model_provider.h"
#include "components/optimization_guide/core/delivery/optimization_target_model_observer.h"
#include "components/optimization_guide/core/inference/model_executor.h"
#include "components/optimization_guide/core/optimization_guide_util.h"
#include "components/optimization_guide/proto/models.pb.h"

namespace optimization_guide {

namespace {

void RecordTaskExecutionLatency(proto::OptimizationTarget optimization_target,
                                base::TimeDelta execution_time) {
  base::UmaHistogramMediumTimes(
      "OptimizationGuide.ModelExecutor.TaskExecutionLatency." +
          optimization_guide::GetStringNameForOptimizationTarget(
              optimization_target),
      execution_time);
}

}  // namespace

// This class owns and handles the execution of models on the UI thread.
// Derived classes must provide an implementation of `ModelExecutor`
// which is then owned by `this`. The passed executor will be called
// and destroyed on the thread specified by `model_executor_task_runner`,
// which is all handled by this class.
//
// Derived classes that override `OnModelUpdated` must call the parent
// `OnModelUpdated` as the first step, for the internal state to be updated.
template <class OutputType, class InputType>
class ModelHandler : public OptimizationTargetModelObserver {
 public:
  ModelHandler(
      OptimizationGuideModelProvider* model_provider,
      scoped_refptr<base::SequencedTaskRunner> model_executor_task_runner,
      std::unique_ptr<ModelExecutor<OutputType, InputType>> model_executor,
      // Passing nullopt will use a default value.
      std::optional<base::TimeDelta> model_inference_timeout,
      proto::OptimizationTarget optimization_target,
      const std::optional<proto::Any>& model_metadata)
      : model_provider_(model_provider),
        optimization_target_(optimization_target),
        model_executor_(std::move(model_executor)),
        model_executor_task_runner_(model_executor_task_runner) {
    DCHECK(model_provider_);
    DCHECK(model_executor_);
    DCHECK_NE(optimization_target_,
              proto::OptimizationTarget::OPTIMIZATION_TARGET_UNKNOWN);

    base::UmaHistogramBoolean(
        "OptimizationGuide.ModelHandler.HandlerCreated." +
            GetStringNameForOptimizationTarget(optimization_target_),
        true);

    handler_created_time_ = base::TimeTicks::Now();

    model_executor_->InitializeAndMoveToExecutionThread(
        model_inference_timeout, optimization_target_,
        model_executor_task_runner_,
        base::SequencedTaskRunner::GetCurrentDefault());

    // Run this after the executor is initialized in case the model is already
    // available.
    model_provider_->AddObserverForOptimizationTargetModel(
        optimization_target_, model_metadata, this);
  }
  ~ModelHandler() override {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);

    model_provider_->RemoveObserverForOptimizationTargetModel(
        optimization_target_, this);

    // |model_executor_|'s  WeakPtrs are used on the model thread, so
    // that is also where the class must be destroyed.
    model_executor_task_runner_->DeleteSoon(FROM_HERE,
                                            std::move(model_executor_));
  }
  ModelHandler(const ModelHandler&) = delete;
  ModelHandler& operator=(const ModelHandler&) = delete;

  // Executes the model using |input| and invokes |callback| on the UI thread
  // when completed. Virtual for testing.
  // TODO(crbug.com/40167079): Add a way to surface errors.
  using ExecutionCallback =
      base::OnceCallback<void(const std::optional<OutputType>&)>;
  virtual void ExecuteModelWithInput(ExecutionCallback callback,
                                     InputType input) {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);

    model_executor_task_runner_->PostTask(
        FROM_HERE, GetExecutionTask(std::move(callback), input));
  }

  // Same as the method above. But also receives a `base::CancelableTaskTracker`
  // for cancelling the execution. Keep in mind that CancelableTaskTracker
  // cannot cancel tasks that have already started to run. Virtual for testing.
  // TODO(crbug.com/40167079): Add a way to surface errors.
  virtual void ExecuteModelWithInput(base::CancelableTaskTracker* tracker,
                                     ExecutionCallback callback,
                                     InputType input) {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);

    tracker->PostTask(model_executor_task_runner_.get(), FROM_HERE,
                      GetExecutionTask(std::move(callback), input));
  }

  // Variants of the above |ExecuteModelWithInput| but which support running
  // multiple model executions in the same call stack. It is guaranteed that the
  // output passed to |BatchExecutionCallback| will always be in the same order
  // as the input vector.
  //
  // IMPORTANT: Running the model multiple times in the same PostTask means that
  // it will take longer for Chrome's threadpool to reuse these CPU cycles for
  // other work, especially for high priority tasks. This method should only be
  // used in time-sensitive applications, for example when the model output is
  // used on UI surfaces. Otherwise use multiple calls to
  // |ExecuteModelWithInput| with a |base::BarrierClosure| (see
  // page_content_annotation_job_executor.cc for an example and explanation).
  using BatchExecutionCallback =
      base::OnceCallback<void(const std::vector<std::optional<OutputType>>&)>;
  virtual void BatchExecuteModelWithInput(
      BatchExecutionCallback callback,
      typename ModelExecutor<OutputType, InputType>::ConstRefInputVector
          batch_input) {
    model_executor_task_runner_->PostTask(
        FROM_HERE, GetBatchExecutionTask(std::move(callback), batch_input));
  }

  // See above comment.
  virtual void BatchExecuteModelWithInput(
      base::CancelableTaskTracker* tracker,
      BatchExecutionCallback callback,
      typename ModelExecutor<OutputType, InputType>::ConstRefInputVector
          batch_input) {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);

    tracker->PostTask(model_executor_task_runner_.get(), FROM_HERE,
                      GetBatchExecutionTask(std::move(callback), batch_input));
  }

  // Runs synchronous batch model execution.
  // Returns batch model outputs.
  std::vector<std::optional<OutputType>> BatchExecuteModelWithInputSync(
      typename ModelExecutor<OutputType, InputType>::ConstRefInputVector
          inputs) {
    base::ElapsedTimer timer;
    auto batch_model_outputs =
        model_executor_->SendForBatchExecutionSync(inputs);
    RecordTaskExecutionLatency(optimization_target_,
                               /*execution_time=*/timer.Elapsed());
    return batch_model_outputs;
  }

  // Note that keeping the model in memory for a long duration may be detected
  // as a memory leak in Chrome, and will always increase the private or shared
  // memory used by the browser by the size of the model file and the
  // constructed TFLite graph.
  void SetShouldUnloadModelOnComplete(bool should_auto_unload) {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
    model_executor_task_runner_->PostTask(
        FROM_HERE,
        base::BindOnce(
            &ModelExecutor<OutputType,
                           InputType>::SetShouldUnloadModelOnComplete,
            model_executor_->GetWeakPtrForExecutionThread(),
            should_auto_unload));
  }

  // Note that keeping the model in memory for a long duration may be detected
  // as a memory leak in Chrome, and will always increase the private or shared
  // memory used by the browser by the size of the model file and the
  // constructed TFLite graph.
  void SetShouldPreloadModel(bool should_preload_model) {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
    model_executor_task_runner_->PostTask(
        FROM_HERE,
        base::BindOnce(
            &ModelExecutor<OutputType, InputType>::SetShouldPreloadModel,
            model_executor_->GetWeakPtrForExecutionThread(),
            should_preload_model));
  }

  // Requests that the model executor unload the model from memory, if it is
  // currently loaded. Virtual to allow derived classes to also observe this
  // signal.
  virtual void UnloadModel() {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
    model_executor_task_runner_->PostTask(
        FROM_HERE,
        base::BindOnce(&ModelExecutor<OutputType, InputType>::UnloadModel,
                       model_executor_->GetWeakPtrForExecutionThread()));
  }

  // OptimizationTargetModelObserver:
  void OnModelUpdated(proto::OptimizationTarget optimization_target,
                      base::optional_ref<const ModelInfo> model_info) override {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
    std::optional<base::FilePath> model_file_path;

    if (optimization_target_ != optimization_target) {
      return;
    }

    if (handler_created_time_) {
      base::UmaHistogramMediumTimes(
          "OptimizationGuide.ModelHandler.HandlerCreatedToModelAvailable." +
              GetStringNameForOptimizationTarget(optimization_target_),
          base::TimeTicks::Now() - *handler_created_time_);
      handler_created_time_ = std::nullopt;
    }

    model_available_ = model_info.has_value();
    if (model_info.has_value()) {
      model_info_ = *model_info;
      model_file_path = model_info->GetModelFilePath();
    } else {
      model_info_ = std::nullopt;
    }

    model_executor_task_runner_->PostTask(
        FROM_HERE,
        base::BindOnce(&ModelExecutor<OutputType, InputType>::UpdateModelFile,
                       model_executor_->GetWeakPtrForExecutionThread(),
                       model_file_path));

    // Run any observing callbacks after the model file is posted to the
    // model executor thread so that any model execution requests are posted to
    // the model executor thread after the model update.
    on_model_updated_callbacks_.Notify();
  }

  // Returns whether a model is available to be executed. Virtual for testing.
  virtual bool ModelAvailable() const {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
    return model_available_;
  }

  // Runs |callback| now if |ModelAvailable()| or the next time |OnModelUpdated|
  // is called.
  void AddOnModelUpdatedCallback(base::OnceClosure callback) {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
    if (ModelAvailable()) {
      std::move(callback).Run();
      return;
    }
    // callbacks are not bound locally are are safe to be destroyed at any time.
    on_model_updated_callbacks_.AddUnsafe(std::move(callback));
  }

  std::optional<ModelInfo> GetModelInfo() const {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
    return model_info_;
  }

  // Validates that the model info's metadata is of the same type and is
  // parseable as |T|. Will return metadata if all checks pass.
  template <class T>
    requires(std::is_convertible_v<T*, google::protobuf::MessageLite*>)
  std::optional<T> ParsedSupportedFeaturesForLoadedModel() const {
    DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
    if (!model_info_ || !model_info_->GetModelMetadata()) {
      return std::nullopt;
    }
    return ParsedAnyMetadata<T>(*model_info_->GetModelMetadata());
  }

 private:
  // Returns a closure supplied with |callback| and |input| for model execution.
  base::OnceClosure GetExecutionTask(ExecutionCallback callback,
                                     InputType input) {
    base::TimeTicks now = base::TimeTicks::Now();

    ExecutionCallback on_complete_callback =
        base::BindOnce(&ModelHandler::OnExecutionCompleted, std::move(callback),
                       optimization_target_, now);
    return base::BindOnce(
        &ModelExecutor<OutputType, InputType>::SendForExecution,
        model_executor_->GetWeakPtrForExecutionThread(),
        std::move(on_complete_callback), now, input);
  }

  // Returns a closure supplied with |callback| and |inputs| for model
  // execution.
  base::OnceClosure GetBatchExecutionTask(
      BatchExecutionCallback callback,
      typename ModelExecutor<OutputType, InputType>::ConstRefInputVector
          inputs) {
    base::TimeTicks now = base::TimeTicks::Now();

    BatchExecutionCallback on_complete_callback =
        base::BindOnce(&ModelHandler::OnBatchExecutionCompleted,
                       std::move(callback), optimization_target_, now);
    return base::BindOnce(
        &ModelExecutor<OutputType, InputType>::SendForBatchExecution,
        model_executor_->GetWeakPtrForExecutionThread(),
        std::move(on_complete_callback), now, inputs);
  }

  // This is called by |model_executor_|. This method does not have to be
  // static, but because it is stateless we've made it static so that we don't
  // have to have this class support WeakPointers on the calling thread.
  static void OnExecutionCompleted(
      ExecutionCallback callback,
      proto::OptimizationTarget optimization_target,
      base::TimeTicks model_execute_start_time,
      const std::optional<OutputType>& output) {
    RecordTaskExecutionLatency(
        optimization_target,
        /*execution_time=*/base::TimeTicks::Now() - model_execute_start_time);

    std::move(callback).Run(output);
  }

  static void OnBatchExecutionCompleted(
      BatchExecutionCallback callback,
      proto::OptimizationTarget optimization_target,
      base::TimeTicks model_execute_start_time,
      const std::vector<std::optional<OutputType>>& output) {
    RecordTaskExecutionLatency(
        optimization_target,
        /*execution_time=*/base::TimeTicks::Now() - model_execute_start_time);

    std::move(callback).Run(output);
  }

  // Not owned. Guaranteed to outlive |this|.
  raw_ptr<OptimizationGuideModelProvider> model_provider_
      GUARDED_BY_CONTEXT(sequence_checker_);

  const proto::OptimizationTarget optimization_target_;

  // The time that |optimization_target_| was registered wih |model_provider_|
  // when |this| is created.
  //
  // Will only be non-nullopt if a model has not been received yet after the
  // target was registered.
  std::optional<base::TimeTicks> handler_created_time_;

  // The owned model executor.
  std::unique_ptr<ModelExecutor<OutputType, InputType>> model_executor_;

  // The model executor task runner. Note that whenever a task is posted here,
  // the task takes a reference to the TaskRunner (in a cyclic dependency) so
  // |base::Unretained| is not safe anywhere in this class or the
  // |model_executor_|.
  scoped_refptr<base::SequencedTaskRunner> model_executor_task_runner_;

  // Set in |OnModelUpdated|.
  std::optional<ModelInfo> model_info_ GUARDED_BY_CONTEXT(sequence_checker_);

  // Populated with callbacks if |AddOnModelUpdatedCallback| is called before a
  // model file is available, then is notified when |OnModelUpdated| is called.
  base::OnceClosureList on_model_updated_callbacks_
      GUARDED_BY_CONTEXT(sequence_checker_);

  // Set in |OnModelUpdated|.
  bool model_available_ GUARDED_BY_CONTEXT(sequence_checker_) = false;

  SEQUENCE_CHECKER(sequence_checker_);
};

}  // namespace optimization_guide

#endif  // COMPONENTS_OPTIMIZATION_GUIDE_CORE_INFERENCE_MODEL_HANDLER_H_