1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/page_load_metrics/browser/layout_shift_normalization.h"
namespace page_load_metrics {
constexpr auto NEW_SHIFT_BUFFER_WINDOW_DURATION = base::Seconds(5);
constexpr auto MAX_SHIFT_BUFFER_SIZE = 300;
LayoutShiftNormalization::LayoutShiftNormalization() = default;
LayoutShiftNormalization::~LayoutShiftNormalization() = default;
void LayoutShiftNormalization::AddNewLayoutShifts(
const std::vector<page_load_metrics::mojom::LayoutShiftPtr>& new_shifts,
base::TimeTicks current_time,
float cumulative_layout_shift_score) {
if (new_shifts.empty() || normalized_cls_data_.data_tainted)
return;
if ((current_time - new_shifts[0]->layout_shift_time >
NEW_SHIFT_BUFFER_WINDOW_DURATION) ||
(recent_layout_shifts_.size() + new_shifts.size() >
MAX_SHIFT_BUFFER_SIZE)) {
// We can't keep all layout shifts all the time especially for long lived
// pages. So we allow a layout shift to be delivered to the browser
// process within 5 seconds and set a limit for the number of shifts we can
// store in the browser process. If the delivery latency of a layout shift
// is bigger than 5s, we can't process this layout shift and get the correct
// normalization results, which means we should not report the results in
// UKM.
normalized_cls_data_.data_tainted = true;
return;
}
// Append all shift data.
for (const auto& layout_shift : new_shifts) {
recent_layout_shifts_.emplace_back(layout_shift->layout_shift_time,
layout_shift->layout_shift_score);
}
// At this point, the vector contains two sorted subvectors, and we can do an
// in-place merge to create a sorted vector.
std::inplace_merge(recent_layout_shifts_.begin(),
recent_layout_shifts_.end() - new_shifts.size(),
recent_layout_shifts_.end());
// Now that we have a single sorted list of shifts, we can find the partition
// point for old shifts which we are ready to delete
auto first_non_stale = std::upper_bound(
recent_layout_shifts_.begin(), recent_layout_shifts_.end(),
current_time - NEW_SHIFT_BUFFER_WINDOW_DURATION,
[](auto time, auto const& shift) { return time < shift.first; });
// Update sliding and session window CLS.
UpdateWindowCLS(recent_layout_shifts_.begin(), first_non_stale,
recent_layout_shifts_.end(), cumulative_layout_shift_score);
// Finally, remove the stale shifts at this point.
recent_layout_shifts_.erase(recent_layout_shifts_.begin(), first_non_stale);
}
void LayoutShiftNormalization::ClearAllLayoutShifts() {
normalized_cls_data_ = NormalizedCLSData();
recent_layout_shifts_.clear();
session_gap1000ms_max5000ms_ = SessionWindow();
}
void LayoutShiftNormalization::UpdateSessionWindow(
SessionWindow* session_window,
base::TimeDelta gap,
base::TimeDelta max_duration,
std::vector<std::pair<base::TimeTicks, double>>::const_iterator begin,
std::vector<std::pair<base::TimeTicks, double>>::const_iterator end,
float& max_score) {
for (auto it = begin; it != end; ++it) {
if ((it->first - session_window->last_time > gap) ||
(it->first - session_window->start_time > max_duration)) {
session_window->start_time = it->first;
session_window->layout_shift_score = 0;
}
session_window->last_time = it->first;
session_window->layout_shift_score += it->second;
max_score = std::max(max_score, session_window->layout_shift_score);
}
}
// This function will update layout shift normalization results for sliding
// windows and session windows twice. The first update is processing stale
// layout shifts (current_time - layout_shift_time >= 5s) in
// recent_layout_shifts_. The second update is continuing the first update by
// processing remaining layout shifts in recent_layout_shifts_. Processing
// layout shifts in order is very important to our algorithm or we may
// miscalculate the number of windows or layout shift score for a window.
// We assume the browser process can receive any layout shift within 5 seconds,
// so there might be some non-stale layout shifts on the way and a newer layout
// shift can be received earlier than an old one. This is one reason why we
// update layout shift normalization twice. Another reason is we can't updating
// normalization on demand when we record UKM because of constant class objects.
// The first update is for updating the normalization for all stale layout shift
// we received. The second update is for all layout shifts we received so far in
// case we need to record UKM right away.
void LayoutShiftNormalization::UpdateWindowCLS(
std::vector<std::pair<base::TimeTicks, double>>::const_iterator first,
std::vector<std::pair<base::TimeTicks, double>>::const_iterator
first_non_stale,
std::vector<std::pair<base::TimeTicks, double>>::const_iterator last,
float cumulative_layout_shift_score) {
// Update Session Windows.
UpdateSessionWindow(
&session_gap1000ms_max5000ms_, base::Milliseconds(1000),
base::Milliseconds(5000), first, first_non_stale,
normalized_cls_data_.session_windows_gap1000ms_max5000ms_max_cls);
auto tmp_session_gap1000ms_max5000ms = session_gap1000ms_max5000ms_;
UpdateSessionWindow(
&tmp_session_gap1000ms_max5000ms, base::Milliseconds(1000),
base::Milliseconds(5000), first_non_stale, last,
normalized_cls_data_.session_windows_gap1000ms_max5000ms_max_cls);
}
} // namespace page_load_metrics
|