1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/performance_manager/resource_attribution/query_scheduler.h"
#include <optional>
#include <utility>
#include <vector>
#include "base/barrier_callback.h"
#include "base/check_op.h"
#include "base/containers/enum_set.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/notreached.h"
#include "base/types/optional_util.h"
#include "base/types/pass_key.h"
#include "components/performance_manager/public/graph/graph.h"
#include "components/performance_manager/public/graph/node_data_describer_registry.h"
#include "components/performance_manager/public/resource_attribution/resource_types.h"
#include "components/performance_manager/resource_attribution/context_collection.h"
#include "components/performance_manager/resource_attribution/performance_manager_aliases.h"
#include "components/performance_manager/resource_attribution/query_params.h"
namespace resource_attribution::internal {
namespace {
QueryScheduler* g_query_scheduler = nullptr;
} // namespace
QueryScheduler::QueryScheduler() = default;
QueryScheduler::~QueryScheduler() = default;
// static
QueryScheduler* QueryScheduler::Get() {
return g_query_scheduler;
}
base::WeakPtr<QueryScheduler> QueryScheduler::GetWeakPtr() {
return weak_factory_.GetWeakPtr();
}
void QueryScheduler::AddScopedQuery(QueryParams* query_params) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
CHECK(query_params);
// TODO(crbug.com/40926264): Associate a notifier with the params so that when
// a scheduled measurement is done, the correct ScopedResourceUsageQuery can
// be notified. (Currently queries are only notified when they request it by
// calling RequestResults().)
if (query_params->resource_types.Has(ResourceType::kCPUTime)) {
AddCPUQuery();
}
if (query_params->resource_types.Has(ResourceType::kMemorySummary)) {
AddMemoryQuery();
}
}
void QueryScheduler::RemoveScopedQuery(
std::unique_ptr<QueryParams> query_params) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
CHECK(query_params);
// TODO(crbug.com/40926264): Forget the notifier associated with the params.
if (query_params->resource_types.Has(ResourceType::kCPUTime)) {
const std::optional<QueryId>& query_id =
query_params->GetId(base::PassKey<QueryScheduler>());
if (query_id.has_value()) {
cpu_monitor_.RepeatingQueryStopped(query_id.value());
}
RemoveCPUQuery();
}
if (query_params->resource_types.Has(ResourceType::kMemorySummary)) {
RemoveMemoryQuery();
}
// `query_params` goes out of scope and is deleted here.
}
void QueryScheduler::StartRepeatingQuery(QueryParams* query_params) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
CHECK(query_params);
// Assign a QueryId to the query. This isn't done in AddScopedQuery() because
// the QueryId is used to identify queries that need to be notified of
// results, and a ScopedResourceUsageQuery that never calls Start() doesn't
// need to be notified.
static QueryId::Generator id_generator;
std::optional<QueryId>& query_id =
query_params->GetMutableId(base::PassKey<QueryScheduler>());
CHECK(!query_id.has_value());
query_id = id_generator.GenerateNextId();
if (query_params->resource_types.Has(ResourceType::kCPUTime)) {
cpu_monitor_.RepeatingQueryStarted(query_id.value());
}
}
void QueryScheduler::RequestResults(
const QueryParams& query_params,
base::OnceCallback<void(const QueryResultMap&)> callback) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Send out a measurement request for each resource type. The BarrierCallback
// will invoke OnResultsReceived when all have responded.
const size_t num_requests = query_params.resource_types.size();
auto barrier_callback = base::BarrierCallback<QueryResultMap>(
num_requests, base::BindOnce(&QueryScheduler::OnResultsReceived,
weak_factory_.GetWeakPtr(),
query_params.contexts, std::move(callback)));
size_t requests_sent = 0;
for (ResourceType resource_type : query_params.resource_types) {
switch (resource_type) {
case ResourceType::kCPUTime:
if (cpu_monitor_.IsMonitoring()) {
// Pass the QueryId of a scoped query or nullopt for a one-shot.
barrier_callback.Run(cpu_monitor_.UpdateAndGetCPUMeasurements(
query_params.GetId(base::PassKey<QueryScheduler>())));
} else {
// If no scoped query is keeping the CPU monitor running, just return
// empty results.
// TODO(crbug.com/40926264): Could run the CPU monitor for a few
// seconds instead.
barrier_callback.Run({});
}
requests_sent++;
break;
case ResourceType::kMemorySummary:
memory_provider_->RequestMemorySummary(barrier_callback);
requests_sent++;
break;
}
}
CHECK_EQ(requests_sent, num_requests);
}
void QueryScheduler::OnPassedToGraph(Graph* graph) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
CHECK(!g_query_scheduler);
g_query_scheduler = this;
memory_provider_.emplace(graph);
graph->GetNodeDataDescriberRegistry()->RegisterDescriber(
base::OptionalToPtr(memory_provider_), "ResourceAttr.Memory");
graph->GetNodeDataDescriberRegistry()->RegisterDescriber(&cpu_monitor_,
"ResourceAttr.CPU");
}
void QueryScheduler::OnTakenFromGraph(Graph* graph) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
graph->GetNodeDataDescriberRegistry()->UnregisterDescriber(&cpu_monitor_);
if (cpu_query_count_ > 0) {
cpu_monitor_.StopMonitoring();
}
graph->GetNodeDataDescriberRegistry()->UnregisterDescriber(
base::OptionalToPtr(memory_provider_));
memory_provider_.reset();
CHECK_EQ(g_query_scheduler, this);
g_query_scheduler = nullptr;
}
CPUMeasurementMonitor& QueryScheduler::GetCPUMonitorForTesting() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return cpu_monitor_;
}
MemoryMeasurementProvider& QueryScheduler::GetMemoryProviderForTesting() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return memory_provider_.value();
}
uint32_t QueryScheduler::GetQueryCountForTesting(
ResourceType resource_type) const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
switch (resource_type) {
case ResourceType::kCPUTime:
return cpu_query_count_;
case ResourceType::kMemorySummary:
return memory_query_count_;
}
NOTREACHED();
}
void QueryScheduler::RecordMemoryMetrics() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
cpu_monitor_.RecordMemoryMetrics();
}
void QueryScheduler::AddCPUQuery() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
cpu_query_count_ += 1;
// Check for overflow.
CHECK_GT(cpu_query_count_, 0U);
if (cpu_query_count_ == 1) {
CHECK(!cpu_monitor_.IsMonitoring());
cpu_monitor_.StartMonitoring(GetOwningGraph());
}
}
void QueryScheduler::RemoveCPUQuery() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
CHECK_GE(cpu_query_count_, 1U);
cpu_query_count_ -= 1;
if (cpu_query_count_ == 0) {
CHECK(cpu_monitor_.IsMonitoring());
cpu_monitor_.StopMonitoring();
}
}
void QueryScheduler::AddMemoryQuery() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
memory_query_count_ += 1;
// Check for overflow.
CHECK_GT(memory_query_count_, 0U);
}
void QueryScheduler::RemoveMemoryQuery() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
CHECK_GE(memory_query_count_, 1U);
memory_query_count_ -= 1;
}
void QueryScheduler::OnResultsReceived(
const ContextCollection& contexts,
base::OnceCallback<void(const QueryResultMap&)> callback,
std::vector<QueryResultMap> all_results) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
QueryResultMap merged_results;
for (auto& result_map : all_results) {
for (auto& [context, result] : result_map) {
if (!contexts.ContainsContext(context)) {
continue;
}
QueryResults& merged_result = merged_results[context];
// Move from `result` into `merged_result`. Only one member of `result`
// should be set since each element of `all_results` is the result for a
// single resource type.
if (result.cpu_time_result.has_value()) {
std::swap(result.cpu_time_result, merged_result.cpu_time_result);
} else if (result.memory_summary_result.has_value()) {
std::swap(result.memory_summary_result,
merged_result.memory_summary_result);
}
// If this fails, either `result` had multiple members set, or multiple
// entries of `all_results` copied measurements of the same resource into
// `merged_result` and the earlier measurement was swapped into `result`.
CHECK(result == QueryResults{});
}
}
std::move(callback).Run(merged_results);
}
} // namespace resource_attribution::internal
|