1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/390223051): Remove C-library calls to fix the errors.
#pragma allow_unsafe_libc_calls
#endif
#include "components/segmentation_platform/internal/database/signal_key.h"
#include <cmath>
#include <cstring>
#include "base/logging.h"
#include "base/test/simple_test_clock.h"
#include "base/time/time.h"
#include "components/segmentation_platform/internal/database/signal_key_internal.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace segmentation_platform {
namespace {
int CompareBinaryKeys(const SignalKey& a, const SignalKey& b) {
std::string a_key = a.ToBinary();
std::string b_key = b.ToBinary();
CHECK_EQ(a_key.size(), b_key.size());
return std::memcmp(a_key.data(), b_key.data(), a_key.size());
}
bool Equal(const SignalKey& k1, const SignalKey& k2) {
// Log comparison debugging info for failing tests.
VLOG(0) << k1 << " ==? " << k2;
return k1.kind() == k2.kind() && k1.name_hash() == k2.name_hash() &&
k1.range_start() == k2.range_start() &&
k1.range_end() == k2.range_end() && CompareBinaryKeys(k1, k2) == 0;
}
} // namespace
class SignalKeyTest : public testing::Test {
public:
SignalKeyTest() = default;
~SignalKeyTest() override = default;
void VerifyConversion(const SignalKey& key) {
std::string binary_key = key.ToBinary();
SignalKey result;
EXPECT_TRUE(SignalKey::FromBinary(binary_key, &result));
EXPECT_TRUE(Equal(key, result));
}
protected:
void SetUp() override {
test_clock_.SetNow(base::Time::UnixEpoch() + base::Hours(8));
}
base::SimpleTestClock test_clock_;
};
TEST_F(SignalKeyTest, TestConvertToAndFromBinary) {
VerifyConversion(SignalKey(SignalKey::Kind::USER_ACTION, 1, test_clock_.Now(),
test_clock_.Now() + base::Seconds(10)));
VerifyConversion(SignalKey(SignalKey::Kind::HISTOGRAM_VALUE, 2,
base::Time::Now(),
test_clock_.Now() + base::Seconds(20)));
VerifyConversion(SignalKey(SignalKey::Kind::HISTOGRAM_ENUM, 3,
base::Time::Now(),
test_clock_.Now() + base::Seconds(30)));
}
TEST_F(SignalKeyTest, TestValidity) {
SignalKey valid_key(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
test_clock_.Now() + base::Seconds(10));
EXPECT_TRUE(valid_key.IsValid());
// A default constructed key should not be valid.
SignalKey default_constructed_key;
EXPECT_FALSE(default_constructed_key.IsValid());
// Verify that each individual field is tested for validity.
SignalKey invalid_key1(SignalKey::Kind::UNKNOWN, 42, test_clock_.Now(),
test_clock_.Now());
EXPECT_FALSE(invalid_key1.IsValid());
SignalKey invalid_key2(SignalKey::Kind::USER_ACTION, 0, test_clock_.Now(),
test_clock_.Now());
EXPECT_FALSE(invalid_key2.IsValid());
SignalKey invalid_key3(SignalKey::Kind::USER_ACTION, 42, base::Time(),
test_clock_.Now());
EXPECT_FALSE(invalid_key3.IsValid());
SignalKey invalid_key4(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
base::Time());
EXPECT_FALSE(invalid_key4.IsValid());
}
TEST_F(SignalKeyTest, TestUsesSafeBinaryFormat) {
// By testing that the underlying format is the binary version of
// SignalKeyInternal, we can ensure API guarantees based on SignalKeyInternal.
SignalKey key(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
test_clock_.Now() + base::Seconds(10));
std::string binary_key = key.ToBinary();
SignalKeyInternal internal_key;
EXPECT_TRUE(SignalKeyInternalFromBinary(binary_key, &internal_key));
EXPECT_EQ('u', internal_key.prefix.kind);
EXPECT_EQ(42UL, internal_key.prefix.name_hash);
EXPECT_EQ(11644502400, internal_key.time_range_start_sec);
EXPECT_EQ(11644502410, internal_key.time_range_end_sec);
}
TEST_F(SignalKeyTest, TestGetPrefixInBinary) {
SignalKey key(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
test_clock_.Now() + base::Seconds(10));
std::string binary_prefix = key.GetPrefixInBinary();
SignalKeyInternal::Prefix prefix;
EXPECT_TRUE(SignalKeyInternalPrefixFromBinary(binary_prefix, &prefix));
EXPECT_EQ('u', prefix.kind);
EXPECT_EQ(42UL, prefix.name_hash);
}
TEST_F(SignalKeyTest, EarliestEndTimeComesFirst) {
SignalKey early(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
test_clock_.Now());
SignalKey late(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
test_clock_.Now() + base::Seconds(20));
EXPECT_LT(CompareBinaryKeys(early, late), 0);
}
TEST_F(SignalKeyTest, EqualKeysHaveEqualBinaryKeys) {
SignalKey a(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
test_clock_.Now());
SignalKey b(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
test_clock_.Now());
EXPECT_EQ(0, CompareBinaryKeys(a, b));
}
TEST_F(SignalKeyTest, EndTimeMoreSignificantThanStartTime) {
SignalKey early_end(SignalKey::Kind::USER_ACTION, 42,
test_clock_.Now() + base::Seconds(20),
test_clock_.Now() + base::Seconds(20));
SignalKey early_start(SignalKey::Kind::USER_ACTION, 42,
test_clock_.Now() + base::Seconds(10),
test_clock_.Now() + base::Seconds(30));
EXPECT_LT(CompareBinaryKeys(early_end, early_start), 0);
}
TEST_F(SignalKeyTest, OrderByStartTimeIfEverythingElseIsEqual) {
SignalKey early_start(SignalKey::Kind::USER_ACTION, 42,
test_clock_.Now() + base::Seconds(10),
test_clock_.Now());
SignalKey late_start(SignalKey::Kind::USER_ACTION, 42,
test_clock_.Now() + base::Seconds(20),
test_clock_.Now());
EXPECT_LT(CompareBinaryKeys(early_start, late_start), 0);
}
TEST_F(SignalKeyTest, DifferentNameHashGivesDifferentKey) {
SignalKey a(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
test_clock_.Now());
SignalKey b(SignalKey::Kind::USER_ACTION, 84, test_clock_.Now(),
test_clock_.Now());
EXPECT_NE(0, CompareBinaryKeys(a, b));
}
TEST_F(SignalKeyTest, DifferentKindGivesDifferentKey) {
SignalKey a(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
test_clock_.Now());
SignalKey b(SignalKey::Kind::HISTOGRAM_VALUE, 42, test_clock_.Now(),
test_clock_.Now());
EXPECT_NE(0, CompareBinaryKeys(a, b));
}
TEST_F(SignalKeyTest, TestKeyDebugStringRepresentation) {
SignalKey key(SignalKey::Kind::USER_ACTION, 42, test_clock_.Now(),
test_clock_.Now() + base::Seconds(10));
EXPECT_EQ(
"{kind=1, name_hash=42, range_start=1970-01-01 08:00:00.000000 UTC, "
"range_end=1970-01-01 08:00:10.000000 UTC}",
key.ToDebugString());
std::stringstream key_buffer;
key_buffer << key;
EXPECT_EQ(
"{kind=1, name_hash=42, range_start=1970-01-01 08:00:00.000000 UTC, "
"range_end=1970-01-01 08:00:10.000000 UTC}",
key_buffer.str());
}
} // namespace segmentation_platform
|