1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/segmentation_platform/internal/execution/processing/custom_input_processor.h"
#include <string_view>
#include "base/rand_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/system/sys_info.h"
#include "base/task/sequenced_task_runner.h"
#include "components/segmentation_platform/internal/database/ukm_types.h"
#include "components/segmentation_platform/internal/execution/processing/feature_processor_state.h"
#include "components/segmentation_platform/internal/execution/processing/processing_utils.h"
#include "components/segmentation_platform/internal/metadata/metadata_utils.h"
#include "components/segmentation_platform/public/input_delegate.h"
#include "components/segmentation_platform/public/proto/model_metadata.pb.h"
#if BUILDFLAG(IS_ANDROID)
#include "components/segmentation_platform/internal/android/execution/processing/custom_device_utils.h"
#endif // BUILDFLAG(IS_ANDROID)
namespace segmentation_platform::processing {
namespace {
std::optional<int> GetArgAsInt(
const google::protobuf::Map<std::string, std::string>& args,
const std::string& key) {
int value;
auto iter = args.find(key);
// Did not find target key.
if (iter == args.end()) {
return std::nullopt;
}
// Perform string to int conversion, return empty value if the conversion
// failed.
if (!base::StringToInt(std::string_view(iter->second), &value)) {
return std::nullopt;
}
return value;
}
} // namespace
CustomInputProcessor::CustomInputProcessor(
const base::Time prediction_time,
InputDelegateHolder* input_delegate_holder)
: input_delegate_holder_(input_delegate_holder),
prediction_time_(prediction_time) {}
CustomInputProcessor::CustomInputProcessor(
base::flat_map<FeatureIndex, Data>&& data,
const base::Time prediction_time,
InputDelegateHolder* input_delegate_holder)
: input_delegate_holder_(input_delegate_holder),
prediction_time_(prediction_time) {
for (const auto& item : data) {
custom_inputs_[item.first] =
std::move(item.second.input_feature->custom_input());
}
}
CustomInputProcessor::~CustomInputProcessor() = default;
void CustomInputProcessor::Process(
FeatureProcessorState& feature_processor_state,
QueryProcessorCallback callback) {
auto result = std::make_unique<base::flat_map<FeatureIndex, Tensor>>();
ProcessIndexType<FeatureIndex>(std::move(custom_inputs_),
feature_processor_state, std::move(result),
std::move(callback));
}
template <typename IndexType>
void CustomInputProcessor::ProcessIndexType(
base::flat_map<IndexType, proto::CustomInput> custom_inputs,
FeatureProcessorState& feature_processor_state,
std::unique_ptr<base::flat_map<IndexType, Tensor>> result,
TemplateCallback<IndexType> callback) {
bool success = true;
auto it = custom_inputs.begin();
for (; it != custom_inputs.end(); it = custom_inputs.begin()) {
// Get the next feature in the list to process.
const proto::CustomInput custom_input(std::move(it->second));
const IndexType index = it->first;
custom_inputs.erase(it);
InputDelegate* input_delegate = nullptr;
if (input_delegate_holder_) {
input_delegate =
input_delegate_holder_->GetDelegate(custom_input.fill_policy());
}
if (input_delegate) {
// If a delegate is available then use it to process the input. All the
// state in this method is moved, so it is ok even if the client ran the
// callback without posting it.
input_delegate->Process(
custom_input, feature_processor_state,
base::BindOnce(
&CustomInputProcessor::OnGotProcessedValue<IndexType>,
weak_ptr_factory_.GetWeakPtr(), std::move(custom_inputs),
feature_processor_state.GetWeakPtr(), std::move(result),
std::move(callback), index, custom_input.tensor_length()));
return;
}
DCHECK(custom_input.tensor_length() != 0);
// Validate the proto::CustomInput metadata.
if (metadata_utils::ValidateMetadataCustomInput(custom_input) !=
metadata_utils::ValidationResult::kValidationSuccess) {
success = false;
} else {
(*result)[index] =
ProcessSingleCustomInput(custom_input, feature_processor_state);
}
}
// Processing of the feature list has completed.
DCHECK(custom_inputs.empty());
if (!success || feature_processor_state.error()) {
result->clear();
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError);
}
base::SequencedTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(std::move(callback), std::move(*result)));
}
template <typename IndexType>
void CustomInputProcessor::OnGotProcessedValue(
base::flat_map<IndexType, proto::CustomInput> custom_inputs,
base::WeakPtr<FeatureProcessorState> feature_processor_state,
std::unique_ptr<base::flat_map<IndexType, Tensor>> result,
TemplateCallback<IndexType> callback,
IndexType current_index,
size_t current_tensor_length,
bool error,
Tensor current_value) {
if (error) {
feature_processor_state->SetError(
stats::FeatureProcessingError::kCustomInputError);
} else {
DCHECK_EQ(current_tensor_length, current_value.size());
}
(*result)[current_index] = std::move(current_value);
ProcessIndexType<IndexType>(std::move(custom_inputs),
*feature_processor_state, std::move(result),
std::move(callback));
}
using SqlCustomInputIndex = std::pair<int, int>;
template void CustomInputProcessor::ProcessIndexType(
base::flat_map<SqlCustomInputIndex, proto::CustomInput> custom_inputs,
FeatureProcessorState& feature_processor_state,
std::unique_ptr<base::flat_map<SqlCustomInputIndex, Tensor>> result,
TemplateCallback<std::pair<int, int>> callback);
template void CustomInputProcessor::OnGotProcessedValue(
base::flat_map<SqlCustomInputIndex, proto::CustomInput> custom_inputs,
base::WeakPtr<FeatureProcessorState> feature_processor_state,
std::unique_ptr<base::flat_map<SqlCustomInputIndex, Tensor>> result,
TemplateCallback<SqlCustomInputIndex> callback,
SqlCustomInputIndex current_index,
size_t current_tensor_length,
bool success,
Tensor current_value);
QueryProcessor::Tensor CustomInputProcessor::ProcessSingleCustomInput(
const proto::CustomInput& custom_input,
FeatureProcessorState& feature_processor_state) {
std::vector<ProcessedValue> tensor_result;
if (custom_input.fill_policy() == proto::CustomInput::UNKNOWN_FILL_POLICY) {
// When parsing a CustomInput object, if the fill policy is not
// supported by the current version of the client, the fill policy field
// will not be filled. When this happens, the custom input processor
// will either use the default values to generate an input tensor or
// fail the model execution.
tensor_result = std::vector<ProcessedValue>(
custom_input.default_value().begin(),
custom_input.default_value().begin() + custom_input.tensor_length());
} else if (custom_input.fill_policy() ==
proto::CustomInput::FILL_PREDICTION_TIME) {
if (!AddPredictionTime(custom_input, tensor_result))
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError);
} else if (custom_input.fill_policy() ==
proto::CustomInput::TIME_RANGE_BEFORE_PREDICTION) {
if (!AddTimeRangeBeforePrediction(custom_input, tensor_result))
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError);
} else if (custom_input.fill_policy() ==
proto::CustomInput::FILL_FROM_INPUT_CONTEXT) {
if (!AddFromInputContext(custom_input, feature_processor_state,
tensor_result))
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError);
} else if (custom_input.fill_policy() ==
proto::CustomInput::FILL_DEVICE_RAM_MB) {
if (!AddDeviceRAMInMB(custom_input, tensor_result)) {
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError);
}
} else if (custom_input.fill_policy() ==
proto::CustomInput::FILL_DEVICE_OS_VERSION_NUMBER) {
if (!AddDeviceOSVersionNumber(custom_input, tensor_result)) {
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError);
}
} else if (custom_input.fill_policy() ==
proto::CustomInput::FILL_DEVICE_PPI) {
if (!AddDevicePPI(custom_input, tensor_result)) {
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError);
}
} else if (custom_input.fill_policy() ==
proto::CustomInput::PRICE_TRACKING_HINTS) {
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError);
NOTREACHED() << "InputDelegate is not found";
} else if (custom_input.fill_policy() == proto::CustomInput::FILL_RANDOM) {
if (!AddRandom(custom_input, tensor_result)) {
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError);
}
} else if (custom_input.fill_policy() ==
proto::CustomInput::FILL_FROM_SHOPPING_SERVICE) {
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError);
NOTREACHED() << "InputDelegate is not found";
}
return tensor_result;
}
bool CustomInputProcessor::AddFromInputContext(
const proto::CustomInput& custom_input,
FeatureProcessorState& feature_processor_state,
std::vector<ProcessedValue>& out_tensor) {
if (custom_input.tensor_length() != 1) {
return false;
}
scoped_refptr<InputContext> input_context =
feature_processor_state.input_context();
std::string input_name =
metadata_utils::GetInputKeyForInputContextCustomInput(custom_input);
std::optional<processing::ProcessedValue> input_context_value;
if (input_context) {
input_context_value = input_context->GetMetadataArgument(input_name);
}
if (!input_context || !input_context_value.has_value()) {
feature_processor_state.SetError(
stats::FeatureProcessingError::kCustomInputError,
"The model expects an input '" + input_name +
"' which wasn't found in the input context.");
return false;
}
out_tensor.emplace_back(input_context_value.value());
return true;
}
bool CustomInputProcessor::AddPredictionTime(
const proto::CustomInput& custom_input,
std::vector<ProcessedValue>& out_tensor) {
if (custom_input.tensor_length() != 1) {
return false;
}
out_tensor.emplace_back(prediction_time_);
return true;
}
bool CustomInputProcessor::AddTimeRangeBeforePrediction(
const proto::CustomInput& custom_input,
std::vector<ProcessedValue>& out_tensor) {
if (custom_input.tensor_length() != 2) {
return false;
}
constexpr char kBucketCountArg[] = "bucket_count";
std::optional<int> bucket_count =
GetArgAsInt(custom_input.additional_args(), kBucketCountArg);
if (bucket_count.has_value()) {
out_tensor.emplace_back(prediction_time_ -
base::Days(bucket_count.value()));
out_tensor.emplace_back(prediction_time_);
} else {
return false;
}
return true;
}
bool CustomInputProcessor::AddDeviceRAMInMB(
const proto::CustomInput& custom_input,
std::vector<ProcessedValue>& out_tensor) {
if (custom_input.tensor_length() != 1) {
return false;
}
float device_ram_in_mb = base::SysInfo::AmountOfPhysicalMemoryMB();
out_tensor.emplace_back(device_ram_in_mb);
return true;
}
bool CustomInputProcessor::AddDeviceOSVersionNumber(
const proto::CustomInput& custom_input,
std::vector<ProcessedValue>& out_tensor) {
if (custom_input.tensor_length() != 1) {
return false;
}
std::string os_version = base::SysInfo::OperatingSystemVersion();
float device_os_version = processing::ProcessOsVersionString(os_version);
out_tensor.emplace_back(device_os_version);
return true;
}
bool CustomInputProcessor::AddDevicePPI(
const proto::CustomInput& custom_input,
std::vector<ProcessedValue>& out_tensor) {
if (custom_input.tensor_length() != 1) {
return false;
}
#if BUILDFLAG(IS_ANDROID)
float device_ppi = CustomDeviceUtils::GetDevicePPI();
out_tensor.emplace_back(device_ppi);
return true;
#else
return false;
#endif // BUILDFLAG(IS_ANDROID)
}
bool CustomInputProcessor::AddRandom(const proto::CustomInput& custom_input,
std::vector<ProcessedValue>& out_tensor) {
if (custom_input.tensor_length() != 1) {
return false;
}
out_tensor.emplace_back(base::RandFloat());
return true;
}
} // namespace segmentation_platform::processing
|