1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/segmentation_platform/internal/execution/processing/feature_aggregator_impl.h"
#include <cstdint>
#include <optional>
#include <vector>
#include "base/notreached.h"
#include "base/numerics/clamped_math.h"
#include "base/numerics/safe_conversions.h"
#include "base/time/time.h"
#include "components/segmentation_platform/internal/database/signal_database.h"
#include "components/segmentation_platform/internal/database/signal_sample_view.h"
#include "components/segmentation_platform/public/proto/aggregation.pb.h"
#include "components/segmentation_platform/public/proto/types.pb.h"
namespace segmentation_platform::processing {
namespace {
using Sample = SignalDatabase::Sample;
std::vector<SignalSampleView::Entries> Bucketize(
uint64_t bucket_count,
const base::Time& end_time,
const base::TimeDelta& bucket_duration,
const SignalSampleView& samples) {
std::vector<SignalSampleView::Entries> bucketized_samples(bucket_count);
for (auto& sample : samples) {
const base::Time& timestamp = sample.time;
base::TimeDelta time_since_now = end_time - timestamp;
int bucket_index = time_since_now / bucket_duration;
// Ignore out-of-bounds samples.
if (bucket_index < 0 || base::saturated_cast<uint32_t>(bucket_index) >=
bucketized_samples.size()) {
continue;
}
bucketized_samples[bucket_index].emplace_back(sample);
}
return bucketized_samples;
}
int64_t SumValues(proto::SignalType signal_type,
const SignalSampleView& samples) {
if (signal_type == proto::SignalType::USER_ACTION)
return base::saturated_cast<int64_t>(samples.size());
int64_t sum = 0;
for (auto& sample : samples)
sum = base::ClampAdd(sum, sample.value);
return sum;
}
std::vector<float> CountAggregation(const SignalSampleView& samples) {
return {static_cast<float>(samples.size())};
}
std::vector<float> CountBooleanAggregation(const SignalSampleView& samples) {
return {static_cast<float>(samples.size() > 0 ? 1 : 0)};
}
std::vector<float> BucketedCountAggregation(
uint64_t bucket_count,
const base::Time& end_time,
const base::TimeDelta& bucket_duration,
const SignalSampleView& samples) {
auto bucketized_samples =
Bucketize(bucket_count, end_time, bucket_duration, samples);
std::vector<float> tensor_data;
for (auto& bucket : bucketized_samples)
tensor_data.emplace_back(static_cast<float>(bucket.size()));
return tensor_data;
}
std::vector<float> BucketedCountBooleanAggregation(
uint64_t bucket_count,
const base::Time& end_time,
const base::TimeDelta& bucket_duration,
const SignalSampleView& samples) {
auto bucketized_samples =
Bucketize(bucket_count, end_time, bucket_duration, samples);
std::vector<float> tensor_data;
for (auto& bucket : bucketized_samples)
tensor_data.emplace_back(static_cast<float>(bucket.size() > 0 ? 1 : 0));
return tensor_data;
}
std::vector<float> BucketedCountBooleanTrueCountAggregation(
uint64_t bucket_count,
const base::Time& end_time,
const base::TimeDelta& bucket_duration,
const SignalSampleView& samples) {
auto bucketized_samples =
Bucketize(bucket_count, end_time, bucket_duration, samples);
int64_t true_count = 0;
for (auto& bucket : bucketized_samples) {
if (bucket.size() > 0)
true_count = base::ClampAdd(true_count, 1);
}
return {static_cast<float>(true_count)};
}
std::vector<float> BucketedCumulativeCountAggregation(
uint64_t bucket_count,
const base::Time& end_time,
const base::TimeDelta& bucket_duration,
const SignalSampleView& samples) {
auto bucketized_samples =
Bucketize(bucket_count, end_time, bucket_duration, samples);
int64_t cumulative_count = 0;
std::vector<float> tensor_data;
for (auto& bucket : bucketized_samples) {
cumulative_count = base::ClampAdd(cumulative_count, bucket.size());
tensor_data.emplace_back(static_cast<float>(cumulative_count));
}
return tensor_data;
}
std::vector<float> SumAggregation(proto::SignalType signal_type,
const SignalSampleView& samples) {
return {static_cast<float>(SumValues(signal_type, samples))};
}
std::vector<float> SumBooleanAggregation(proto::SignalType signal_type,
const SignalSampleView& samples) {
return SumValues(signal_type, samples) > 0 ? std::vector<float>{1}
: std::vector<float>{0};
}
std::vector<float> BucketedSumAggregation(
proto::SignalType signal_type,
uint64_t bucket_count,
const base::Time& end_time,
const base::TimeDelta& bucket_duration,
const SignalSampleView& samples) {
auto bucketized_samples =
Bucketize(bucket_count, end_time, bucket_duration, samples);
std::vector<float> tensor_data;
for (auto& bucket : bucketized_samples) {
SignalSampleView iter(bucket, std::nullopt);
tensor_data.emplace_back(static_cast<float>(SumValues(signal_type, iter)));
}
return tensor_data;
}
std::vector<float> BucketedSumBooleanAggregation(
proto::SignalType signal_type,
uint64_t bucket_count,
const base::Time& end_time,
const base::TimeDelta& bucket_duration,
const SignalSampleView& samples) {
auto bucketized_samples =
Bucketize(bucket_count, end_time, bucket_duration, samples);
std::vector<float> tensor_data;
for (auto& bucket : bucketized_samples) {
SignalSampleView iter(bucket, std::nullopt);
tensor_data.emplace_back(
static_cast<float>(SumValues(signal_type, iter) > 0 ? 1 : 0));
}
return tensor_data;
}
std::vector<float> BucketedSumBooleanTrueCountAggregation(
proto::SignalType signal_type,
uint64_t bucket_count,
const base::Time& end_time,
const base::TimeDelta& bucket_duration,
const SignalSampleView& samples) {
auto bucketized_samples =
Bucketize(bucket_count, end_time, bucket_duration, samples);
int64_t true_count = 0;
for (auto& bucket : bucketized_samples) {
SignalSampleView iter(bucket, std::nullopt);
if (SumValues(signal_type, iter) > 0) {
true_count = base::ClampAdd(true_count, 1);
}
}
return std::vector<float>{static_cast<float>(true_count)};
}
std::vector<float> BucketedCumulativeSumAggregation(
proto::SignalType signal_type,
uint64_t bucket_count,
const base::Time& end_time,
const base::TimeDelta& bucket_duration,
const SignalSampleView& samples) {
auto bucketized_samples =
Bucketize(bucket_count, end_time, bucket_duration, samples);
int64_t cumulative_sum = 0;
std::vector<float> tensor_data;
for (auto& bucket : bucketized_samples) {
SignalSampleView iter(bucket, std::nullopt);
cumulative_sum =
base::ClampAdd(cumulative_sum, SumValues(signal_type, iter));
tensor_data.emplace_back(static_cast<float>(cumulative_sum));
}
return tensor_data;
}
} // namespace
FeatureAggregatorImpl::FeatureAggregatorImpl() = default;
FeatureAggregatorImpl::~FeatureAggregatorImpl() = default;
std::optional<std::vector<float>> FeatureAggregatorImpl::Process(
proto::SignalType signal_type,
uint64_t name_hash,
proto::Aggregation aggregation,
uint64_t bucket_count,
const base::Time& start_time,
const base::Time& end_time,
const base::TimeDelta& bucket_duration,
const std::vector<int32_t>& accepted_enum_ids,
const std::vector<SignalDatabase::DbEntry>& all_samples) const {
SignalSampleView samples(
all_samples, SignalSampleView::Query(signal_type, name_hash, start_time,
end_time, accepted_enum_ids));
switch (aggregation) {
case proto::Aggregation::UNKNOWN:
NOTREACHED();
case proto::Aggregation::COUNT:
return CountAggregation(samples);
case proto::Aggregation::COUNT_BOOLEAN:
return CountBooleanAggregation(samples);
case proto::Aggregation::BUCKETED_COUNT:
return BucketedCountAggregation(bucket_count, end_time, bucket_duration,
samples);
case proto::Aggregation::BUCKETED_COUNT_BOOLEAN:
return BucketedCountBooleanAggregation(bucket_count, end_time,
bucket_duration, samples);
case proto::Aggregation::BUCKETED_COUNT_BOOLEAN_TRUE_COUNT:
return BucketedCountBooleanTrueCountAggregation(bucket_count, end_time,
bucket_duration, samples);
case proto::Aggregation::BUCKETED_CUMULATIVE_COUNT:
return BucketedCumulativeCountAggregation(bucket_count, end_time,
bucket_duration, samples);
case proto::Aggregation::SUM:
return SumAggregation(signal_type, samples);
case proto::Aggregation::SUM_BOOLEAN:
return SumBooleanAggregation(signal_type, samples);
case proto::Aggregation::BUCKETED_SUM:
return BucketedSumAggregation(signal_type, bucket_count, end_time,
bucket_duration, samples);
case proto::Aggregation::BUCKETED_SUM_BOOLEAN:
return BucketedSumBooleanAggregation(signal_type, bucket_count, end_time,
bucket_duration, samples);
case proto::Aggregation::BUCKETED_SUM_BOOLEAN_TRUE_COUNT:
return BucketedSumBooleanTrueCountAggregation(
signal_type, bucket_count, end_time, bucket_duration, samples);
case proto::Aggregation::BUCKETED_CUMULATIVE_SUM:
return BucketedCumulativeSumAggregation(
signal_type, bucket_count, end_time, bucket_duration, samples);
case proto::Aggregation::LATEST_OR_DEFAULT:
auto it = samples.Last();
if (it == samples.end()) {
// If empty, then latest data cannot be found.
return std::nullopt;
}
return std::vector<float>({static_cast<float>((*it).value)});
}
}
} // namespace segmentation_platform::processing
|