1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/segmentation_platform/internal/execution/processing/sync_device_info_observer.h"
#include <optional>
#include "base/feature_list.h"
#include "base/metrics/field_trial_params.h"
#include "base/metrics/histogram_functions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/task/sequenced_task_runner.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "components/segmentation_platform/internal/execution/processing/feature_processor_state.h"
#include "components/segmentation_platform/public/types/processed_value.h"
#include "components/sync_device_info/device_info.h"
#include "components/sync_device_info/device_info_tracker.h"
namespace segmentation_platform::processing {
using OsType = syncer::DeviceInfo::OsType;
using FormFactor = syncer ::DeviceInfo::FormFactor;
namespace {
constexpr int kActiveDaysThresholdForMetrics = 14;
constexpr int kActiveDayThresholdForInputDelegate = 60;
#define AS_FLOAT_VAL(x) ProcessedValue(static_cast<float>(x))
base::TimeDelta GetActivePeriodForMetrics() {
TRACE_EVENT0("ui", "sync_device_info_observer.cc::GetActivePeriodForMetrics");
return base::Days(base::GetFieldTrialParamByFeatureAsInt(
kSegmentationDeviceCountByOsType, "active_days_threshold",
kActiveDaysThresholdForMetrics));
}
base::TimeDelta Age(base::Time last_update, base::Time now) {
// Don't allow negative age for things somehow updated in the future.
return std::max(base::TimeDelta(), now - last_update);
}
// Determines if a device with |last_update| timestamp should be considered
// active, given the current time.
bool IsDeviceActive(base::Time last_update,
base::Time now,
std::optional<base::TimeDelta> active_threshold) {
TRACE_EVENT0("ui", "sync_device_info_observer.cc::GetActivePeriodForMetrics");
base::TimeDelta active_days_threshold =
active_threshold ? *active_threshold : GetActivePeriodForMetrics();
return Age(last_update, now) < active_days_threshold;
}
// Keep the following in sync with variants in
// //tools/metrics/histograms/metadata/segmentation_platform/histograms.xml.
const char* ConvertOsTypeToString(OsType os_type) {
switch (os_type) {
case OsType::kWindows:
return "Windows";
case OsType::kMac:
return "Mac";
case OsType::kLinux:
return "Linux";
case OsType::kIOS:
return "iOS";
case OsType::kAndroid:
return "Android";
case OsType::kChromeOsAsh:
return "ChromeOsAsh";
case OsType::kChromeOsLacros:
return "ChromeOsLacros";
case OsType::kFuchsia:
return "Fuchsia";
case OsType::kUnknown:
return "Unknown";
}
}
} // namespace
BASE_FEATURE(kSegmentationDeviceCountByOsType,
"SegmentationDeviceCountByOsType",
base::FEATURE_ENABLED_BY_DEFAULT);
SyncDeviceInfoObserver::SyncDeviceInfoObserver(
syncer::DeviceInfoTracker* device_info_tracker)
: device_info_tracker_(device_info_tracker) {
DCHECK(device_info_tracker_);
device_info_tracker_->AddObserver(this);
}
SyncDeviceInfoObserver::~SyncDeviceInfoObserver() {
device_info_tracker_->RemoveObserver(this);
}
// Count device by os types and record them in UMA only if not recorded yet.
void SyncDeviceInfoObserver::OnDeviceInfoChange() {
TRACE_EVENT0("ui", "SyncDeviceInfoObserver::OnDeviceInfoChange");
if (!device_info_tracker_->IsSyncing() ||
device_info_status_ == DeviceInfoStatus::INFO_AVAILABLE) {
return;
}
device_info_status_ = DeviceInfoStatus::INFO_AVAILABLE;
// Run any method calls that were received during initialization.
while (!pending_actions_.empty()) {
TRACE_EVENT0("ui", "post_pending_action");
auto callback = std::move(pending_actions_.front());
pending_actions_.pop_front();
device_info_status_ = DeviceInfoStatus::INFO_AVAILABLE;
base::SequencedTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(std::move(callback), true));
}
// Record device count by OS types.
std::map<OsType, int> count_by_os_type =
CountActiveDevicesByOsType(GetActivePeriodForMetrics());
// Record UMA metrics of device counts by OS types.
// Record 0 when there are no devices associated with one OS type.
for (int os_type_idx = static_cast<int>(OsType::kUnknown);
os_type_idx <= static_cast<int>(OsType::kFuchsia); ++os_type_idx) {
OsType os_type = static_cast<OsType>(os_type_idx);
int count = count_by_os_type[os_type];
base::UmaHistogramSparse(
base::StringPrintf("SegmentationPlatform.DeviceCountByOsType.%s",
ConvertOsTypeToString(os_type)),
std::min(count, 100));
}
}
std::map<OsType, int> SyncDeviceInfoObserver::CountActiveDevicesByOsType(
base::TimeDelta active_threshold) const {
TRACE_EVENT0("ui", "SyncDeviceInfoObserver::CountActiveDevicesByOsType");
std::map<OsType, int> count_by_os_type;
const base::Time now = base::Time::Now();
for (const syncer::DeviceInfo* device_info :
device_info_tracker_->GetAllChromeDeviceInfo()) {
if (!IsDeviceActive(device_info->last_updated_timestamp(), now,
active_threshold)) {
continue;
}
auto os_type = device_info->os_type();
count_by_os_type[os_type] += 1;
}
return count_by_os_type;
}
void SyncDeviceInfoObserver::Process(
const proto::CustomInput& input,
FeatureProcessorState& feature_processor_state,
ProcessedCallback callback) {
int wait_for_device_info_in_seconds = 0;
auto model_input_it =
input.additional_args().find("wait_for_device_info_in_seconds");
std::optional<int> wait_from_input;
if (feature_processor_state.input_context()) {
auto api_input_it =
feature_processor_state.input_context()->metadata_args.find(
"wait_for_device_info_in_seconds");
if (api_input_it !=
feature_processor_state.input_context()->metadata_args.end()) {
CHECK_EQ(api_input_it->second.type, ProcessedValue::Type::INT);
wait_from_input = api_input_it->second.int_val;
}
}
if (wait_from_input) {
wait_for_device_info_in_seconds = *wait_from_input;
} else if (model_input_it != input.additional_args().end()) {
if (!base::StringToInt(model_input_it->second,
&wait_for_device_info_in_seconds)) {
wait_for_device_info_in_seconds = 0;
}
}
if (wait_for_device_info_in_seconds > 0 &&
(device_info_status_ == DeviceInfoStatus::TIMEOUT_NOT_POSTED ||
device_info_status_ == DeviceInfoStatus::TIMEOUT_POSTED_BUT_NOT_HIT)) {
pending_actions_.push_back(base::BindOnce(
&SyncDeviceInfoObserver::ReadyToFinishProcessing,
weak_ptr_factory_.GetWeakPtr(), input,
feature_processor_state.input_context(), std::move(callback)));
if (device_info_status_ == DeviceInfoStatus::TIMEOUT_NOT_POSTED) {
device_info_status_ = DeviceInfoStatus::TIMEOUT_POSTED_BUT_NOT_HIT;
base::SequencedTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE,
base::BindOnce(&SyncDeviceInfoObserver::OnTimeout,
weak_ptr_factory_.GetWeakPtr()),
base::Seconds(wait_for_device_info_in_seconds));
}
} else {
ReadyToFinishProcessing(
input, feature_processor_state.input_context(), std::move(callback),
device_info_status_ == DeviceInfoStatus::INFO_AVAILABLE);
}
}
void SyncDeviceInfoObserver::ReadyToFinishProcessing(
const proto::CustomInput& input,
scoped_refptr<InputContext> input_context,
ProcessedCallback callback,
bool success) {
if (!success) {
Tensor inputs(10, ProcessedValue(0.0f));
inputs[0] = AS_FLOAT_VAL(1); // failure.
std::move(callback).Run(/*error=*/false, std::move(inputs));
return;
}
std::optional<base::TimeDelta> active_threshold;
if (input_context) {
active_threshold = base::Days(kActiveDayThresholdForInputDelegate);
auto input_context_iter =
input_context->metadata_args.find("active_days_limit");
if (input_context_iter != input_context->metadata_args.end()) {
const auto& processed_value = input_context_iter->second;
if (processed_value.type == ProcessedValue::INT) {
active_threshold = base::Days(processed_value.int_val);
}
}
}
std::map<
std::pair<syncer::DeviceInfo::FormFactor, syncer::DeviceInfo::OsType>,
int>
device_count_by_type;
int total_count = 0;
const base::Time now = base::Time::Now();
for (const syncer::DeviceInfo* device_info :
device_info_tracker_->GetAllDeviceInfo()) {
if (device_info_tracker_->IsRecentLocalCacheGuid(device_info->guid())) {
continue;
}
if (!IsDeviceActive(device_info->last_updated_timestamp(), now,
active_threshold)) {
continue;
}
auto os_type = device_info->os_type();
device_count_by_type[{device_info->form_factor(), os_type}] += 1;
total_count++;
}
Tensor inputs(10, ProcessedValue(0.0f));
inputs[0] = AS_FLOAT_VAL(0); // success.
inputs[1] = AS_FLOAT_VAL(
(device_count_by_type[{FormFactor::kPhone, OsType::kAndroid}]));
inputs[2] = AS_FLOAT_VAL(
(device_count_by_type[{FormFactor::kTablet, OsType::kAndroid}]));
inputs[3] =
AS_FLOAT_VAL((device_count_by_type[{FormFactor::kPhone, OsType::kIOS}]));
inputs[4] =
AS_FLOAT_VAL((device_count_by_type[{FormFactor::kTablet, OsType::kIOS}]));
inputs[5] = AS_FLOAT_VAL(
(device_count_by_type[{FormFactor::kDesktop, OsType::kLinux}]));
inputs[6] = AS_FLOAT_VAL(
(device_count_by_type[{FormFactor::kDesktop, OsType::kMac}]));
inputs[7] = AS_FLOAT_VAL(
(device_count_by_type[{FormFactor::kDesktop, OsType::kWindows}]));
inputs[8] = AS_FLOAT_VAL(
(device_count_by_type[{FormFactor::kDesktop, OsType::kChromeOsLacros}]));
int known_type_count = 0;
for (unsigned i = 1; i <= 8; ++i) {
known_type_count += inputs[i].float_val;
}
inputs[9] = AS_FLOAT_VAL(total_count - known_type_count);
std::move(callback).Run(/*error=*/false, std::move(inputs));
}
void SyncDeviceInfoObserver::OnTimeout() {
if (device_info_status_ == DeviceInfoStatus::INFO_AVAILABLE) {
return;
}
device_info_status_ = DeviceInfoStatus::INFO_UNAVAILABLE;
while (!pending_actions_.empty()) {
auto callback = std::move(pending_actions_.front());
pending_actions_.pop_front();
base::SequencedTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(std::move(callback), false));
}
return;
}
} // namespace segmentation_platform::processing
|