1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "components/segmentation_platform/internal/metadata/metadata_writer.h"
#include <cstddef>
#include <optional>
#include <vector>
#include "base/check.h"
#include "base/metrics/metrics_hashes.h"
#include "base/strings/strcat.h"
#include "components/segmentation_platform/public/constants.h"
#include "components/segmentation_platform/public/proto/model_metadata.pb.h"
namespace segmentation_platform {
namespace {
void FillCustomInput(const MetadataWriter::CustomInput feature,
proto::CustomInput& input) {
input.set_tensor_length(feature.tensor_length);
input.set_fill_policy(feature.fill_policy);
for (size_t i = 0; i < feature.default_values_size; ++i) {
input.add_default_value(feature.default_values[i]);
}
if (feature.name) {
input.set_name(feature.name);
}
for (size_t i = 0; i < feature.arg_size; ++i) {
(*input.mutable_additional_args())[feature.arg[i].first] =
std::string(feature.arg[i].second);
}
}
template <typename StringVector>
void PopulateMultiClassClassifier(
proto::Predictor::MultiClassClassifier* multi_class_classifier,
const StringVector& class_labels,
int top_k_outputs) {
multi_class_classifier->set_top_k_outputs(top_k_outputs);
for (const auto& class_label : class_labels) {
multi_class_classifier->mutable_class_labels()->Add(
std::string(class_label));
}
}
} // namespace
MetadataWriter::MetadataWriter(proto::SegmentationModelMetadata* metadata)
: metadata_(metadata) {}
MetadataWriter::~MetadataWriter() = default;
void MetadataWriter::AddUmaFeatures(const UMAFeature features[],
size_t features_size,
bool is_output) {
for (size_t i = 0; i < features_size; i++) {
const auto& feature = features[i];
proto::UMAFeature* uma_feature;
if (is_output) {
auto* training_output =
metadata_->mutable_training_outputs()->add_outputs();
uma_feature =
training_output->mutable_uma_output()->mutable_uma_feature();
} else {
auto* input_feature = metadata_->add_input_features();
uma_feature = input_feature->mutable_uma_feature();
}
uma_feature->set_type(feature.signal_type);
uma_feature->set_name(feature.name);
uma_feature->set_name_hash(base::HashMetricName(feature.name));
uma_feature->set_bucket_count(feature.bucket_count);
uma_feature->set_tensor_length(feature.tensor_length);
uma_feature->set_aggregation(feature.aggregation);
for (size_t j = 0; j < feature.enum_ids_size; j++) {
uma_feature->add_enum_ids(feature.accepted_enum_ids[j]);
}
for (size_t j = 0; j < feature.default_values_size; j++) {
uma_feature->add_default_values(feature.default_values[j]);
}
}
}
proto::SqlFeature* MetadataWriter::AddSqlFeature(const SqlFeature& feature) {
proto::SqlFeature* proto =
metadata_->add_input_features()->mutable_sql_feature();
proto->set_sql(feature.sql);
for (size_t ev = 0; ev < feature.events_size; ++ev) {
const auto& event = feature.events[ev];
auto* ukm_event = proto->mutable_signal_filter()->add_ukm_events();
ukm_event->set_event_hash(event.event_hash.GetUnsafeValue());
for (size_t m = 0; m < event.metrics_size; ++m) {
ukm_event->mutable_metric_hash_filter()->Add(
event.metrics[m].GetUnsafeValue());
}
}
return proto;
}
proto::SqlFeature* MetadataWriter::AddSqlFeature(
const SqlFeature& feature,
const BindValues& bind_values) {
auto* proto = AddSqlFeature(feature);
unsigned index = 0;
for (const auto& it : bind_values) {
auto* value = proto->add_bind_values();
for (unsigned i = index; i < index + it.second.tensor_length; ++i) {
value->add_bind_field_index(i);
}
index += it.second.tensor_length;
value->set_param_type(it.first);
FillCustomInput(it.second, *value->mutable_value());
}
return proto;
}
proto::CustomInput* MetadataWriter::AddCustomInput(const CustomInput& feature) {
proto::CustomInput* proto =
metadata_->add_input_features()->mutable_custom_input();
FillCustomInput(feature, *proto);
return proto;
}
void MetadataWriter::AddDiscreteMappingEntries(
const std::string& key,
const std::pair<float, int>* mappings,
size_t mappings_size) {
auto* discrete_mappings = metadata_->mutable_discrete_mappings();
for (size_t i = 0; i < mappings_size; i++) {
auto* discrete_mapping_entry = (*discrete_mappings)[key].add_entries();
discrete_mapping_entry->set_min_result(mappings[i].first);
discrete_mapping_entry->set_rank(mappings[i].second);
}
}
void MetadataWriter::AddBooleanSegmentDiscreteMapping(const std::string& key) {
const int selected_rank = 1;
const float model_score = 1;
const std::pair<float, int> mappings[]{{model_score, selected_rank}};
AddDiscreteMappingEntries(key, mappings, 1);
}
void MetadataWriter::AddBooleanSegmentDiscreteMappingWithSubsegments(
const std::string& key,
float threshold,
int max_value) {
DCHECK_GT(threshold, 0);
// Should record at least 2 subsegments.
DCHECK_GT(max_value, 1);
const int selected_rank = 1;
const std::pair<float, int> mappings[]{{threshold, selected_rank}};
AddDiscreteMappingEntries(key, mappings, 1);
std::vector<std::pair<float, int>> subsegment_mapping;
for (int i = 1; i <= max_value; ++i) {
subsegment_mapping.emplace_back(i, i);
}
AddDiscreteMappingEntries(
base::StrCat({key, kSubsegmentDiscreteMappingSuffix}),
subsegment_mapping.data(), subsegment_mapping.size());
}
void MetadataWriter::SetSegmentationMetadataConfig(
proto::TimeUnit time_unit,
uint64_t bucket_duration,
int64_t signal_storage_length,
int64_t min_signal_collection_length,
int64_t result_time_to_live) {
metadata_->set_time_unit(time_unit);
metadata_->set_bucket_duration(bucket_duration);
metadata_->set_signal_storage_length(signal_storage_length);
metadata_->set_min_signal_collection_length(min_signal_collection_length);
metadata_->set_result_time_to_live(result_time_to_live);
}
void MetadataWriter::SetDefaultSegmentationMetadataConfig(
int min_signal_collection_length_days,
int signal_storage_length_days) {
SetSegmentationMetadataConfig(proto::TimeUnit::DAY, /*bucket_duration=*/1,
signal_storage_length_days,
min_signal_collection_length_days,
/*result_time_to_live=*/1);
}
void MetadataWriter::AddOutputConfigForBinaryClassifier(
float threshold,
const std::string& positive_label,
const std::string& negative_label) {
proto::Predictor::BinaryClassifier* binary_classifier =
metadata_->mutable_output_config()
->mutable_predictor()
->mutable_binary_classifier();
binary_classifier->set_threshold(threshold);
binary_classifier->set_positive_label(positive_label);
binary_classifier->set_negative_label(negative_label);
}
void MetadataWriter::SetIgnorePreviousModelTTLInOutputConfig() {
metadata_->mutable_output_config()->set_ignore_previous_model_ttl(true);
}
void MetadataWriter::AddOutputConfigForMultiClassClassifier(
base::span<const char* const> class_labels,
int top_k_outputs,
std::optional<float> threshold) {
proto::Predictor::MultiClassClassifier* multi_class_classifier =
metadata_->mutable_output_config()
->mutable_predictor()
->mutable_multi_class_classifier();
PopulateMultiClassClassifier(multi_class_classifier, class_labels,
top_k_outputs);
if (threshold.has_value()) {
multi_class_classifier->set_threshold(threshold.value());
}
}
void MetadataWriter::AddOutputConfigForMultiClassClassifier(
const std::vector<std::string>& class_labels,
int top_k_outputs,
std::optional<float> threshold) {
proto::Predictor::MultiClassClassifier* multi_class_classifier =
metadata_->mutable_output_config()
->mutable_predictor()
->mutable_multi_class_classifier();
PopulateMultiClassClassifier(multi_class_classifier, class_labels,
top_k_outputs);
if (threshold.has_value()) {
multi_class_classifier->set_threshold(threshold.value());
}
}
void MetadataWriter::AddOutputConfigForMultiClassClassifier(
base::span<const char* const> class_labels,
int top_k_outputs,
const base::span<float> per_class_thresholds) {
CHECK_EQ(class_labels.size(), per_class_thresholds.size());
proto::Predictor::MultiClassClassifier* multi_class_classifier =
metadata_->mutable_output_config()
->mutable_predictor()
->mutable_multi_class_classifier();
PopulateMultiClassClassifier(multi_class_classifier, class_labels,
top_k_outputs);
for (float per_class_threshold : per_class_thresholds) {
multi_class_classifier->add_class_thresholds(per_class_threshold);
}
}
void MetadataWriter::AddOutputConfigForBinnedClassifier(
const std::vector<std::pair<float, std::string>>& bins,
std::string underflow_label) {
proto::Predictor::BinnedClassifier* binned_classifier =
metadata_->mutable_output_config()
->mutable_predictor()
->mutable_binned_classifier();
binned_classifier->set_underflow_label(underflow_label);
for (const std::pair<float, std::string>& bin : bins) {
proto::Predictor::BinnedClassifier::Bin* current_bin =
binned_classifier->add_bins();
current_bin->set_min_range(bin.first);
current_bin->set_label(bin.second);
}
}
void MetadataWriter::AddOutputConfigForGenericPredictor(
const std::vector<std::string>& labels) {
proto::Predictor::GenericPredictor* generic_predictor =
metadata_->mutable_output_config()
->mutable_predictor()
->mutable_generic_predictor();
generic_predictor->mutable_output_labels()->Assign(labels.begin(),
labels.end());
}
void MetadataWriter::AddPredictedResultTTLInOutputConfig(
std::vector<std::pair<std::string, std::int64_t>> top_label_to_ttl_list,
int64_t default_ttl,
proto::TimeUnit time_unit) {
proto::PredictedResultTTL* predicted_result_ttl =
metadata_->mutable_output_config()->mutable_predicted_result_ttl();
predicted_result_ttl->set_time_unit(time_unit);
predicted_result_ttl->set_default_ttl(default_ttl);
auto* top_label_to_ttl_map =
predicted_result_ttl->mutable_top_label_to_ttl_map();
for (const std::pair<std::string, int64_t>& label_to_ttl :
top_label_to_ttl_list) {
(*top_label_to_ttl_map)[label_to_ttl.first] = label_to_ttl.second;
}
}
void MetadataWriter::AddDelayTrigger(uint64_t delay_sec) {
auto* config =
metadata_->mutable_training_outputs()->mutable_trigger_config();
auto* trigger = config->add_observation_trigger();
trigger->set_delay_sec(delay_sec);
config->set_decision_type(proto::TrainingOutputs::TriggerConfig::ONDEMAND);
}
void MetadataWriter::AddFromInputContext(const char* custom_input_name,
const char* additional_args_name) {
proto::CustomInput* custom_input = AddCustomInput(MetadataWriter::CustomInput{
.tensor_length = 1,
.fill_policy = proto::CustomInput::FILL_FROM_INPUT_CONTEXT,
.name = custom_input_name});
(*custom_input->mutable_additional_args())["name"] = additional_args_name;
}
} // namespace segmentation_platform
|