1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/segmentation_platform/internal/segmentation_ukm_helper.h"
#include <cmath>
#include <optional>
#include <string_view>
#include "base/bit_cast.h"
#include "base/strings/string_number_conversions.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/scoped_feature_list.h"
#include "base/test/simple_test_clock.h"
#include "base/test/task_environment.h"
#include "base/time/time.h"
#include "components/prefs/testing_pref_service.h"
#include "components/segmentation_platform/internal/constants.h"
#include "components/segmentation_platform/internal/selection/segmentation_result_prefs.h"
#include "components/segmentation_platform/public/config.h"
#include "components/segmentation_platform/public/features.h"
#include "components/segmentation_platform/public/local_state_helper.h"
#include "components/segmentation_platform/public/proto/prediction_result.pb.h"
#include "components/segmentation_platform/public/proto/segmentation_platform.pb.h"
#include "components/segmentation_platform/public/segmentation_platform_service.h"
#include "components/ukm/test_ukm_recorder.h"
#include "services/metrics/public/cpp/ukm_builders.h"
#include "services/metrics/public/cpp/ukm_source_id.h"
#include "testing/gtest/include/gtest/gtest.h"
using Segmentation_ModelExecution = ukm::builders::Segmentation_ModelExecution;
namespace segmentation_platform {
namespace {
// Round errors allowed during conversion.
static const double kRoundingError = 1E-5;
float Int64ToFloat(int64_t encoded) {
return static_cast<float>(base::bit_cast<double>(encoded));
}
void CompareEncodeDecodeDifference(float tensor) {
ASSERT_LT(
std::abs(tensor -
Int64ToFloat(
segmentation_platform::SegmentationUkmHelper::FloatToInt64(
tensor))),
kRoundingError);
}
std::optional<proto::PredictionResult> GetPredictionResult(
std::optional<base::Time> prediction_time = std::nullopt) {
proto::PredictionResult result;
result.add_result(0.5);
result.add_result(0.4);
if (prediction_time.has_value()) {
result.set_timestamp_us(
prediction_time->ToDeltaSinceWindowsEpoch().InMicroseconds());
}
return result;
}
proto::SegmentInfo CreateTestSegmentInfo(proto::SegmentId segment_id,
bool upload_tensors) {
proto::SegmentInfo segment_info;
segment_info.set_segment_id(segment_id);
segment_info.mutable_model_metadata()->set_upload_tensors(upload_tensors);
return segment_info;
}
} // namespace
class SegmentationUkmHelperTest : public testing::Test {
public:
SegmentationUkmHelperTest() = default;
SegmentationUkmHelperTest(const SegmentationUkmHelperTest&) = delete;
SegmentationUkmHelperTest& operator=(const SegmentationUkmHelperTest&) =
delete;
~SegmentationUkmHelperTest() override = default;
void SetUp() override {
InitializeUkmHelper();
test_recorder_.Purge();
}
void InitializeUkmHelper() {
SegmentationUkmHelper::GetInstance()->Initialize();
}
void ExpectUkmMetrics(std::string_view entry_name,
const std::vector<std::string_view>& keys,
const std::vector<int64_t>& values,
ukm::SourceId source_id = ukm::kInvalidSourceId) {
const auto& entries = test_recorder_.GetEntriesByName(entry_name);
EXPECT_EQ(1u, entries.size());
for (const ukm::mojom::UkmEntry* entry : entries) {
if (source_id != ukm::kInvalidSourceId) {
EXPECT_EQ(entry->source_id, source_id);
}
const size_t keys_size = keys.size();
EXPECT_EQ(keys_size, values.size());
for (size_t i = 0; i < keys_size; ++i) {
test_recorder_.ExpectEntryMetric(entry, keys[i], values[i]);
}
}
}
void ExpectEmptyUkmMetrics(std::string_view entry_name) {
EXPECT_EQ(0u, test_recorder_.GetEntriesByName(entry_name).size());
}
void SetSamplingRate(int sampling_rate) {
feature_list_.InitAndEnableFeatureWithParameters(
features::kSegmentationPlatformModelExecutionSampling,
{{kModelExecutionSamplingRateKey,
base::NumberToString(sampling_rate)}});
InitializeUkmHelper();
}
protected:
base::test::TaskEnvironment task_environment_;
ukm::TestAutoSetUkmRecorder test_recorder_;
base::test::ScopedFeatureList feature_list_;
};
// Tests that basic execution results recording works properly.
TEST_F(SegmentationUkmHelperTest, TestExecutionResultReporting) {
SetSamplingRate(1);
// Allow results for OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB to be recorded.
ModelProvider::Request input_tensors = {0.1, 0.7, 0.8, 0.5};
SegmentationUkmHelper::GetInstance()->RecordModelExecutionResult(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, 101, input_tensors,
{0.6, 0.3});
ExpectUkmMetrics(Segmentation_ModelExecution::kEntryName,
{Segmentation_ModelExecution::kOptimizationTargetName,
Segmentation_ModelExecution::kModelVersionName,
Segmentation_ModelExecution::kInput0Name,
Segmentation_ModelExecution::kInput1Name,
Segmentation_ModelExecution::kInput2Name,
Segmentation_ModelExecution::kInput3Name,
Segmentation_ModelExecution::kPredictionResult1Name,
Segmentation_ModelExecution::kPredictionResult2Name},
{
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB,
101,
SegmentationUkmHelper::FloatToInt64(0.1),
SegmentationUkmHelper::FloatToInt64(0.7),
SegmentationUkmHelper::FloatToInt64(0.8),
SegmentationUkmHelper::FloatToInt64(0.5),
SegmentationUkmHelper::FloatToInt64(0.6),
SegmentationUkmHelper::FloatToInt64(0.3),
});
}
// Tests that execution results recording are disabled if sampling rate is 0.
TEST_F(SegmentationUkmHelperTest,
TestExecutionResultReportingwithZeroSampling) {
SetSamplingRate(0);
// Allow results for OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB to be recorded.
ModelProvider::Request input_tensors = {0.1, 0.7, 0.8, 0.5};
EXPECT_EQ(SegmentationUkmHelper::GetInstance()->RecordModelExecutionResult(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, 101,
input_tensors, {0.6, 0.3}),
ukm::NoURLSourceId());
}
// Tests that the training data collection recording works properly.
TEST_F(SegmentationUkmHelperTest, TestTrainingDataCollectionReporting) {
ModelProvider::Request input_tensors = {0.1};
ModelProvider::Response outputs = {1.0, 0.0};
std::vector<int> output_indexes = {2, 3};
SelectedSegment selected_segment(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, 10);
selected_segment.selection_time = base::Time::Now() - base::Seconds(10);
SegmentationUkmHelper::GetInstance()->RecordTrainingData(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, 101,
/*ukm_source_id=*/55, input_tensors, outputs, output_indexes,
GetPredictionResult(selected_segment.selection_time), selected_segment);
ExpectUkmMetrics(Segmentation_ModelExecution::kEntryName,
{Segmentation_ModelExecution::kOptimizationTargetName,
Segmentation_ModelExecution::kModelVersionName,
Segmentation_ModelExecution::kInput0Name,
Segmentation_ModelExecution::kActualResult3Name,
Segmentation_ModelExecution::kActualResult4Name,
Segmentation_ModelExecution::kPredictionResult1Name,
Segmentation_ModelExecution::kPredictionResult2Name,
Segmentation_ModelExecution::kSelectionResultName,
Segmentation_ModelExecution::kOutputDelaySecName},
{
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB,
101,
SegmentationUkmHelper::FloatToInt64(0.1),
SegmentationUkmHelper::FloatToInt64(1.0),
SegmentationUkmHelper::FloatToInt64(0.0),
SegmentationUkmHelper::FloatToInt64(0.5),
SegmentationUkmHelper::FloatToInt64(0.4),
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB,
10,
},
/*source_id=*/55);
}
// Tests tensor uploading for default allowed list.
TEST_F(SegmentationUkmHelperTest, TestDefaultAllowedList) {
proto::SegmentInfo segment_info =
CreateTestSegmentInfo(proto::OPTIMIZATION_TARGET_UNKNOWN, false);
EXPECT_FALSE(
SegmentationUkmHelper::GetInstance()->IsUploadRequested(segment_info));
segment_info = CreateTestSegmentInfo(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, false);
EXPECT_TRUE(
SegmentationUkmHelper::GetInstance()->IsUploadRequested(segment_info));
}
// Tests that tensor uploading if default allowed list is disabled.
TEST_F(SegmentationUkmHelperTest, TestDisallowDefaultAllowedList) {
feature_list_.InitAndDisableFeature(
features::kSegmentationDefaultReportingSegments);
InitializeUkmHelper();
proto::SegmentInfo segment_info = CreateTestSegmentInfo(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, false);
EXPECT_FALSE(
SegmentationUkmHelper::GetInstance()->IsUploadRequested(segment_info));
}
// Tests that tensor uploading is enabled through metadata.
TEST_F(SegmentationUkmHelperTest, TestUploadTensorsAllowedFromMetadata) {
proto::SegmentInfo segment_info = CreateTestSegmentInfo(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, true);
EXPECT_TRUE(
SegmentationUkmHelper::GetInstance()->IsUploadRequested(segment_info));
}
// Tests that float encoding works properly.
TEST_F(SegmentationUkmHelperTest, TestFloatEncoding) {
// Compare the numbers with their IEEE754 binary representations in double.
ASSERT_EQ(SegmentationUkmHelper::FloatToInt64(0.5), 0x3FE0000000000000);
ASSERT_EQ(SegmentationUkmHelper::FloatToInt64(0.25), 0x3FD0000000000000);
ASSERT_EQ(SegmentationUkmHelper::FloatToInt64(0.125), 0x3FC0000000000000);
ASSERT_EQ(SegmentationUkmHelper::FloatToInt64(0.75), 0x3FE8000000000000);
ASSERT_EQ(SegmentationUkmHelper::FloatToInt64(1), 0x3FF0000000000000);
ASSERT_EQ(SegmentationUkmHelper::FloatToInt64(0), 0);
ASSERT_EQ(SegmentationUkmHelper::FloatToInt64(10), 0x4024000000000000);
}
// Tests that floats encoded can be properly decoded later.
TEST_F(SegmentationUkmHelperTest, FloatEncodeDeocode) {
CompareEncodeDecodeDifference(0.1);
CompareEncodeDecodeDifference(0.5);
CompareEncodeDecodeDifference(0.88);
CompareEncodeDecodeDifference(0.01);
ASSERT_EQ(0, Int64ToFloat(SegmentationUkmHelper::FloatToInt64(0)));
ASSERT_EQ(1, Int64ToFloat(SegmentationUkmHelper::FloatToInt64(1)));
}
// Tests that there are too many input tensors to record.
TEST_F(SegmentationUkmHelperTest, TooManyInputTensors) {
SetSamplingRate(1);
base::HistogramTester tester;
std::string histogram_name(
"SegmentationPlatform.StructuredMetrics.TooManyTensors.Count");
ModelProvider::Request input_tensors(100, 0.1);
ukm::SourceId source_id =
SegmentationUkmHelper::GetInstance()->RecordModelExecutionResult(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, 101, input_tensors,
{0.6});
ASSERT_EQ(source_id, ukm::kInvalidSourceId);
tester.ExpectTotalCount(histogram_name, 1);
ASSERT_EQ(tester.GetTotalSum(histogram_name), 100);
}
// Tests output validation for |RecordTrainingData|.
TEST_F(SegmentationUkmHelperTest, OutputsValidation) {
ModelProvider::Request input_tensors{0.1};
// outputs, output_indexes size doesn't match.
ModelProvider::Response outputs{1.0, 0.0};
std::vector<int> output_indexes{0};
ukm::SourceId source_id =
SegmentationUkmHelper::GetInstance()->RecordTrainingData(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, 101,
ukm::kInvalidSourceId, input_tensors, outputs, output_indexes,
GetPredictionResult(), std::nullopt);
ASSERT_EQ(source_id, ukm::kInvalidSourceId);
// output_indexes value too large.
output_indexes = {100, 1000};
source_id = SegmentationUkmHelper::GetInstance()->RecordTrainingData(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, 101,
ukm::kInvalidSourceId, input_tensors, outputs, output_indexes,
GetPredictionResult(), std::nullopt);
ASSERT_EQ(source_id, ukm::kInvalidSourceId);
// Valid outputs.
output_indexes = {3, 0};
source_id = SegmentationUkmHelper::GetInstance()->RecordTrainingData(
proto::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB, 101,
ukm::kInvalidSourceId, input_tensors, outputs, output_indexes,
GetPredictionResult(), std::nullopt);
ASSERT_NE(source_id, ukm::kInvalidSourceId);
}
TEST_F(SegmentationUkmHelperTest, AllowedToUploadData) {
TestingPrefServiceSimple prefs;
SegmentationPlatformService::RegisterLocalStatePrefs(prefs.registry());
LocalStateHelper::GetInstance().Initialize(&prefs);
base::SimpleTestClock clock;
clock.SetNow(base::Time::Now());
// If pref is not initialized, AllowedToUploadData() always return false.
ASSERT_FALSE(
SegmentationUkmHelper::AllowedToUploadData(base::Seconds(1), &clock));
LocalStateHelper::GetInstance().SetPrefTime(
kSegmentationUkmMostRecentAllowedTimeKey, clock.Now());
ASSERT_FALSE(
SegmentationUkmHelper::AllowedToUploadData(base::Seconds(1), &clock));
clock.Advance(base::Seconds(10));
ASSERT_TRUE(
SegmentationUkmHelper::AllowedToUploadData(base::Seconds(1), &clock));
ASSERT_FALSE(
SegmentationUkmHelper::AllowedToUploadData(base::Seconds(11), &clock));
}
} // namespace segmentation_platform
|