1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/services/heap_profiling/json_exporter.h"
#include <inttypes.h>
#include <array>
#include <map>
#include <string>
#include <unordered_map>
#include <vector>
#include "base/containers/adapters.h"
#include "base/files/file_path.h"
#include "base/json/json_writer.h"
#include "base/json/string_escape.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/traced_value.h"
#include "base/values.h"
#include "services/resource_coordinator/public/mojom/memory_instrumentation/memory_instrumentation.mojom.h"
namespace heap_profiling {
namespace {
// Maps strings to integers for the JSON string table.
using StringTable = std::unordered_map<std::string, int>;
// Maps allocation site to node_id of the top frame.
using AllocationToNodeId = std::unordered_map<const AllocationSite*, int>;
constexpr int kAllocatorCount = static_cast<int>(AllocatorType::kMaxValue) + 1;
struct BacktraceNode {
BacktraceNode(int string_id, int parent)
: string_id_(string_id), parent_(parent) {}
static constexpr int kNoParent = -1;
int string_id() const { return string_id_; }
int parent() const { return parent_; }
bool operator<(const BacktraceNode& other) const {
return std::tie(string_id_, parent_) <
std::tie(other.string_id_, other.parent_);
}
private:
const int string_id_;
const int parent_; // kNoParent indicates no parent.
};
using BacktraceTable = std::map<BacktraceNode, int>;
// The hardcoded ID for having no context for an allocation.
constexpr int kUnknownTypeId = 0;
const char* StringForAllocatorType(uint32_t type) {
switch (static_cast<AllocatorType>(type)) {
case AllocatorType::kMalloc:
return "malloc";
case AllocatorType::kPartitionAlloc:
return "partition_alloc";
default:
NOTREACHED();
}
}
// Writes the top-level allocators section. This section is used by the tracing
// UI to show a small summary for each allocator. It's necessary as a
// placeholder to allow the stack-viewing UI to be shown.
base::Value::Dict BuildAllocatorsSummary(const AllocationMap& allocations) {
// Aggregate stats for each allocator type.
std::array<size_t, kAllocatorCount> total_size = {};
std::array<size_t, kAllocatorCount> total_count = {};
for (const auto& alloc_pair : allocations) {
int index = static_cast<int>(alloc_pair.first.allocator);
total_size[index] += alloc_pair.second.size;
total_count[index] += alloc_pair.second.count;
}
base::Value::Dict result;
for (int i = 0; i < kAllocatorCount; i++) {
const char* alloc_type = StringForAllocatorType(i);
// Overall sizes.
base::Value::Dict sizes;
sizes.Set("type", "scalar");
sizes.Set("units", "bytes");
sizes.Set("value", base::StringPrintf("%zx", total_size[i]));
base::Value::Dict attrs;
attrs.Set("virtual_size", sizes.Clone());
attrs.Set("size", std::move(sizes));
base::Value::Dict allocator;
allocator.Set("attrs", std::move(attrs));
result.Set(alloc_type, std::move(allocator));
// Allocated objects.
base::Value::Dict shim_allocated_objects_count;
shim_allocated_objects_count.Set("type", "scalar");
shim_allocated_objects_count.Set("units", "objects");
shim_allocated_objects_count.Set("value",
base::StringPrintf("%zx", total_count[i]));
base::Value::Dict shim_allocated_objects_size;
shim_allocated_objects_size.Set("type", "scalar");
shim_allocated_objects_size.Set("units", "bytes");
shim_allocated_objects_size.Set("value",
base::StringPrintf("%zx", total_size[i]));
base::Value::Dict allocated_objects_attrs;
allocated_objects_attrs.Set("shim_allocated_objects_count",
std::move(shim_allocated_objects_count));
allocated_objects_attrs.Set("shim_allocated_objects_size",
std::move(shim_allocated_objects_size));
base::Value::Dict allocated_objects;
allocated_objects.Set("attrs", std::move(allocated_objects_attrs));
result.Set(alloc_type + std::string("/allocated_objects"),
std::move(allocated_objects));
}
return result;
}
std::string ApplyPathFiltering(const std::string& file,
bool is_argument_filtering_enabled) {
if (is_argument_filtering_enabled) {
base::FilePath::StringType path(file.begin(), file.end());
return base::FilePath(path).BaseName().AsUTF8Unsafe();
}
return file;
}
void MemoryMapsAsValueInto(
const std::vector<memory_instrumentation::mojom::VmRegionPtr>& memory_maps,
base::trace_event::TracedValue* value,
bool is_argument_filtering_enabled) {
static const char kHexFmt[] = "%" PRIx64;
// Refer to the design doc goo.gl/sxfFY8 for the semantics of these fields.
value->BeginArray("vm_regions");
for (const auto& region : memory_maps) {
value->BeginDictionary();
value->SetString("sa", base::StringPrintf(kHexFmt, region->start_address));
value->SetString("sz", base::StringPrintf(kHexFmt, region->size_in_bytes));
if (region->module_timestamp) {
value->SetString("ts",
base::StringPrintf(kHexFmt, region->module_timestamp));
}
if (!region->module_debugid.empty()) {
value->SetString("id", region->module_debugid);
}
if (!region->module_debug_path.empty()) {
value->SetString("df", ApplyPathFiltering(region->module_debug_path,
is_argument_filtering_enabled));
}
value->SetInteger("pf", region->protection_flags);
// The module path will be the basename when argument filtering is
// activated. The allowlisting implemented for filtering string values
// doesn't allow rewriting. Therefore, a different path is produced here
// when argument filtering is activated.
value->SetString("mf", ApplyPathFiltering(region->mapped_file,
is_argument_filtering_enabled));
// The following stats are only well defined on Linux-derived OSes.
#if !BUILDFLAG(IS_MAC) && !BUILDFLAG(IS_WIN)
value->BeginDictionary("bs"); // byte stats
value->SetString(
"pss",
base::StringPrintf(kHexFmt, region->byte_stats_proportional_resident));
value->SetString(
"pd",
base::StringPrintf(kHexFmt, region->byte_stats_private_dirty_resident));
value->SetString(
"pc",
base::StringPrintf(kHexFmt, region->byte_stats_private_clean_resident));
value->SetString(
"sd",
base::StringPrintf(kHexFmt, region->byte_stats_shared_dirty_resident));
value->SetString(
"sc",
base::StringPrintf(kHexFmt, region->byte_stats_shared_clean_resident));
value->SetString("sw",
base::StringPrintf(kHexFmt, region->byte_stats_swapped));
value->EndDictionary();
#endif
value->EndDictionary();
}
value->EndArray();
}
base::Value BuildMemoryMaps(const ExportParams& params) {
base::trace_event::TracedValueJSON traced_value;
MemoryMapsAsValueInto(params.maps, &traced_value,
params.strip_path_from_mapped_files);
return std::move(*traced_value.ToBaseValue());
}
// Inserts or retrieves the ID for a string in the string table.
int AddOrGetString(const std::string& str,
StringTable* string_table,
ExportParams* params) {
return string_table->emplace(str, params->next_id++).first->second;
}
// Processes the context information.
// Strings are added for each referenced context and a mapping between
// context IDs and string IDs is filled in for each.
void FillContextStrings(ExportParams* params,
StringTable* string_table,
std::map<int, int>* context_to_string_id_map) {
// The context map is backwards from what we need, so iterate through the
// whole thing and see which ones are used.
for (const auto& context : params->context_map) {
int string_id = AddOrGetString(context.first, string_table, params);
context_to_string_id_map->emplace(context.second, string_id);
}
// Hard code a string for the unknown context type.
context_to_string_id_map->emplace(
kUnknownTypeId, AddOrGetString("[unknown]", string_table, params));
}
int AddOrGetBacktraceNode(BacktraceNode node,
BacktraceTable* backtrace_table,
ExportParams* params) {
return backtrace_table->emplace(std::move(node), params->next_id++)
.first->second;
}
// Returns the index into nodes of the node to reference for this stack. That
// node will reference its parent node, etc. to allow the full stack to
// be represented.
int AppendBacktraceStrings(const AllocationSite& alloc,
BacktraceTable* backtrace_table,
StringTable* string_table,
ExportParams* params) {
int parent = BacktraceNode::kNoParent;
// Addresses must be outputted in reverse order.
for (const Address addr : base::Reversed(alloc.stack)) {
int sid;
auto it = params->mapped_strings.find(addr);
if (it != params->mapped_strings.end()) {
sid = AddOrGetString(it->second, string_table, params);
} else {
char buf[20];
snprintf(buf, sizeof(buf), "pc:%" PRIx64, addr);
sid = AddOrGetString(buf, string_table, params);
}
parent = AddOrGetBacktraceNode(BacktraceNode(sid, parent), backtrace_table,
params);
}
return parent; // Last item is the top of this stack.
}
base::Value::List BuildStrings(const StringTable& string_table) {
base::Value::List strings;
strings.reserve(string_table.size());
for (const auto& string_pair : string_table) {
base::Value::Dict item;
item.Set("id", string_pair.second);
item.Set("string", string_pair.first);
strings.Append(std::move(item));
}
return strings;
}
base::Value::List BuildMapNodes(const BacktraceTable& nodes) {
base::Value::List items;
items.reserve(nodes.size());
for (const auto& node_pair : nodes) {
base::Value::Dict item;
item.Set("id", node_pair.second);
item.Set("name_sid", node_pair.first.string_id());
if (node_pair.first.parent() != BacktraceNode::kNoParent)
item.Set("parent", node_pair.first.parent());
items.Append(std::move(item));
}
return items;
}
base::Value::List BuildTypeNodes(const std::map<int, int>& type_to_string) {
base::Value::List items;
items.reserve(type_to_string.size());
for (const auto& pair : type_to_string) {
base::Value::Dict item;
item.Set("id", pair.first);
item.Set("name_sid", pair.second);
items.Append(std::move(item));
}
return items;
}
base::Value::Dict BuildAllocations(const AllocationMap& allocations,
const AllocationToNodeId& alloc_to_node_id) {
std::array<base::Value::List, kAllocatorCount> counts;
std::array<base::Value::List, kAllocatorCount> sizes;
std::array<base::Value::List, kAllocatorCount> types;
std::array<base::Value::List, kAllocatorCount> nodes;
for (const auto& alloc : allocations) {
int allocator = static_cast<int>(alloc.first.allocator);
// We use double to store size and count, as it can precisely represent
// values up to 2^52 ~ 4.5 petabytes.
counts[allocator].Append(static_cast<double>(round(alloc.second.count)));
sizes[allocator].Append(static_cast<double>(alloc.second.size));
types[allocator].Append(alloc.first.context_id);
nodes[allocator].Append(alloc_to_node_id.at(&alloc.first));
}
base::Value::Dict allocators;
for (uint32_t i = 0; i < kAllocatorCount; i++) {
base::Value::Dict allocator;
allocator.Set("counts", std::move(counts[i]));
allocator.Set("sizes", std::move(sizes[i]));
allocator.Set("types", std::move(types[i]));
allocator.Set("nodes", std::move(nodes[i]));
allocators.Set(StringForAllocatorType(i), std::move(allocator));
}
return allocators;
}
} // namespace
ExportParams::ExportParams() = default;
ExportParams::~ExportParams() = default;
std::string ExportMemoryMapsAndV2StackTraceToJSON(ExportParams* params) {
base::Value::Dict result;
result.Set("level_of_detail", "detailed");
result.Set("process_mmaps", BuildMemoryMaps(*params));
result.Set("allocators", BuildAllocatorsSummary(params->allocs));
base::Value::Dict heaps_v2;
// Output Heaps_V2 format version. Currently "1" is the only valid value.
heaps_v2.Set("version", 1);
// Put all required context strings in the string table and generate a
// mapping from allocation context_id to string ID.
StringTable string_table;
std::map<int, int> context_to_string_id_map;
FillContextStrings(params, &string_table, &context_to_string_id_map);
AllocationToNodeId alloc_to_node_id;
BacktraceTable nodes;
// For each backtrace, converting the string for the stack entry to string
// IDs. The backtrace -> node ID will be filled in at this time.
for (const auto& alloc : params->allocs) {
int node_id =
AppendBacktraceStrings(alloc.first, &nodes, &string_table, params);
alloc_to_node_id.emplace(&alloc.first, node_id);
}
// Maps section.
base::Value::Dict maps;
maps.Set("strings", BuildStrings(string_table));
maps.Set("nodes", BuildMapNodes(nodes));
maps.Set("types", BuildTypeNodes(context_to_string_id_map));
heaps_v2.Set("maps", std::move(maps));
heaps_v2.Set("allocators",
BuildAllocations(params->allocs, alloc_to_node_id));
result.Set("heaps_v2", std::move(heaps_v2));
std::string result_json;
bool ok = base::JSONWriter::WriteWithOptions(
result, base::JSONWriter::OPTIONS_OMIT_DOUBLE_TYPE_PRESERVATION,
&result_json);
DCHECK(ok);
return result_json;
}
} // namespace heap_profiling
|