1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COMPONENTS_SERVICES_STORAGE_INDEXED_DB_LOCKS_PARTITIONED_LOCK_MANAGER_H_
#define COMPONENTS_SERVICES_STORAGE_INDEXED_DB_LOCKS_PARTITIONED_LOCK_MANAGER_H_
#include <iosfwd>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <vector>
#include "base/containers/flat_set.h"
#include "base/functional/callback.h"
#include "base/memory/scoped_refptr.h"
#include "base/memory/weak_ptr.h"
#include "base/supports_user_data.h"
#include "components/services/storage/indexed_db/locks/partitioned_lock.h"
#include "components/services/storage/indexed_db/locks/partitioned_lock_id.h"
namespace content::indexed_db {
// Used to receive and hold locks from a PartitionedLockManager. This struct
// enables the PartitionedLock objects to always live in the destination of the
// caller's choosing (as opposed to having the locks be an argument in the
// callback, where they could be owned by the task scheduler).
//
// This class must be used and destructed on the same sequence as the
// PartitionedLockManager.
struct PartitionedLockHolder : public base::SupportsUserData {
PartitionedLockHolder();
PartitionedLockHolder(const PartitionedLockHolder&) = delete;
PartitionedLockHolder& operator=(const PartitionedLockHolder&) = delete;
~PartitionedLockHolder() override;
void CancelLockRequest();
std::vector<PartitionedLock> locks;
base::OnceClosure on_cancel;
base::WeakPtrFactory<PartitionedLockHolder> weak_factory{this};
};
// Holds locks of the scopes system. Granted locks are represented by the
// |PartitionedLock| class.
//
// Invariants for the lock management system:
// * Locks are granted in the order in which they are requested.
// * Locks held by an entity must be acquired all at once. If more locks are
// needed (where old locks will continue to be held), then all locks must be
// released first, and then all necessary locks acquired in one acquisition
// call.
class PartitionedLockManager {
public:
// Shared locks can share access to a lock id, while exclusive locks
// require that they are the only lock for their lock id.
enum class LockType { kShared, kExclusive };
// Grabs the current task runner that we are running on to be used for the
// lock acquisition callbacks.
PartitionedLockManager();
PartitionedLockManager(const PartitionedLockManager&) = delete;
PartitionedLockManager& operator=(const PartitionedLockManager&) = delete;
~PartitionedLockManager();
int64_t LocksHeldForTesting() const;
int64_t RequestsWaitingForTesting() const;
int64_t RequestsWaitingForMetrics() const;
// Acquires locks for the given requests. Lock partitions are treated as
// completely independent domains.
struct PartitionedLockRequest {
PartitionedLockRequest(PartitionedLockId lock_id, LockType type);
friend bool operator==(const PartitionedLockRequest&,
const PartitionedLockRequest&) = default;
friend auto operator<=>(const PartitionedLockRequest&,
const PartitionedLockRequest&) = default;
PartitionedLockId lock_id;
LockType type;
};
// Acquires locks for the given requests.
// `compare_priority` must return true iff this acquisition has a *higher*
// priority than the one represented by the passed holder, and should skip
// ahead of it in line (`request_queue_`). This property need not be
// transitive. May be null, which is equivalent to always returning false.
void AcquireLocks(base::flat_set<PartitionedLockRequest> lock_requests,
PartitionedLockHolder& locks_holder,
base::OnceClosure callback,
base::RepeatingCallback<bool(const PartitionedLockHolder&)>
compare_priority = {});
enum class TestLockResult { kLocked, kFree };
// Tests to see if the given lock request can be acquired.
TestLockResult TestLock(PartitionedLockRequest lock_requests);
// Filter out the list of `PartitionedLockId`s that cannot be acquired given
// the list of `PartitionedLockRequest`.
// See `Lock::CanBeAcquired()`.
std::vector<PartitionedLockId> GetUnacquirableLocks(
std::vector<PartitionedLockRequest>& lock_requests);
// Returns true if `held_locks` are blocking any queued request. Only requests
// for which `filter` returns true are considered. It's possible for
// `blocked_requests` to be very large, so this is intended to be as efficient
// as possible.
bool IsBlockingAnyRequest(
const base::flat_set<PartitionedLockId>& held_locks,
base::RepeatingCallback<bool(PartitionedLockHolder*)> filter) const;
// Outputs the lock state (held & requested locks) into a debug value,
// suitable for printing an 'internals' or to print during debugging. The
// `transform` is used to change the lock ids to human-readable values.
// Note: The human-readable values MUST be unique per lock id, and if to lock
// ids resolve to the same string, then this function will DCHECK.
using TransformLockIdToStringFn = std::string(const PartitionedLockId&);
private:
// Metadata representing the state of a lockable entity, which is in turn
// defined by an ID (`PartitionedLockId`). To support shared access, there can
// be multiple acquisitions of this lock, represented in |acquired_count|.
struct LockState {
LockState();
LockState(const LockState&) = delete;
LockState(LockState&&) noexcept;
~LockState();
LockState& operator=(const LockState&) = delete;
LockState& operator=(LockState&&) noexcept;
bool CanBeAcquired(LockType lock_type) {
return acquired_count == 0 || (this->access_mode == LockType::kShared &&
lock_type == LockType::kShared);
}
// The number of holders sharing the lock.
int acquired_count = 0;
// The current access mode. If kExclusive, `acquired_count` must not be more
// than 1. If `acquired_count` is zero, this is meaningless.
LockType access_mode = LockType::kShared;
};
// Represents a request to grab a number of locks.
struct AcquisitionRequest {
AcquisitionRequest();
~AcquisitionRequest();
AcquisitionRequest(AcquisitionRequest&&);
AcquisitionRequest& operator=(AcquisitionRequest&&) = default;
// To be called when the locks are all acquired.
base::OnceClosure acquired_callback;
// The entities that the request seeks to lock.
base::flat_set<PartitionedLockRequest> lock_requests;
// Ownership of the locks will be transferred to this object.
base::WeakPtr<PartitionedLockHolder> locks_holder;
};
// Returns true if the requests are overlapping, i.e. they couldn't
// simultaneously be filled.
static bool RequestsAreOverlapping(
const base::flat_set<PartitionedLockRequest>& requests_a,
const base::flat_set<PartitionedLockRequest>& requests_b);
// If locks can be granted to the requester at `requests_iter`, then grant
// those locks and remove the requester from `request_queue_`, returning an
// iter pointing to the next request after where the old one was in the list.
// If locks can't be granted, return an iterator pointing to the next request
// in the queue (i.e. one after `requests_iter`).
std::list<AcquisitionRequest>::iterator MaybeGrantLocksAndIterate(
std::list<AcquisitionRequest>::iterator requests_iter,
bool notify_synchronously = false);
void AcquireLock(PartitionedLockRequest request,
PartitionedLockHolder& locks_holder);
bool CanAcquireLock(PartitionedLockId lock_id, LockType type);
// Called when an acquisition request is to be dropped. This corresponds to
// `AcquisitionRequest::locks_holder` becoming null.
void LockRequestCancelled();
// Called when a granted lock has been released.
void LockReleased(PartitionedLockId lock_id);
// The set of all known lockable entities and their current state.
std::map<PartitionedLockId, LockState> locks_;
// This queue is FIFO by default, but some requests may cut ahead in line as
// determined by `compare_priority`.
std::list<AcquisitionRequest> request_queue_;
base::WeakPtrFactory<PartitionedLockManager> weak_factory_{this};
};
} // namespace content::indexed_db
#endif // COMPONENTS_SERVICES_STORAGE_INDEXED_DB_LOCKS_PARTITIONED_LOCK_MANAGER_H_
|