1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/sync/base/unique_position.h"
#include <algorithm>
#include <cstdint>
#include <functional>
#include <memory>
#include <vector>
#include "base/base64.h"
#include "base/hash/sha1.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_span.h"
#include "base/rand_util.h"
#include "base/strings/string_number_conversions.h"
#include "components/sync/protocol/unique_position.pb.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace syncer {
namespace {
// This function exploits internal knowledge of how the protobufs are serialized
// to help us build UniquePositions from strings described in this file.
static UniquePosition FromBytes(const std::string& bytes) {
sync_pb::UniquePosition proto;
proto.set_value(bytes);
return UniquePosition::FromProto(proto);
}
class UniquePositionTest : public ::testing::Test {
protected:
// Accessor to fetch the length of the position's internal representation
// We try to avoid having any test expectations on it because this is an
// implementation detail.
//
// If you run the tests with --v=1, we'll print out some of the lengths
// so you can see how well the algorithm performs in various insertion
// scenarios.
size_t GetLength(const UniquePosition& pos) {
return pos.ToProto().ByteSizeLong();
}
const size_t kMinLength = UniquePosition::kSuffixLength;
const size_t kGenericPredecessorLength = kMinLength + 2;
const size_t kGenericSuccessorLength = kMinLength + 1;
const size_t kBigPositionLength = kMinLength;
const size_t kSmallPositionLength = kMinLength;
// Be careful when adding more prefixes to this list.
// We have to manually ensure each has a unique suffix.
const UniquePosition kGenericPredecessor =
FromBytes((std::string(kGenericPredecessorLength, '\x23') + '\xFF'));
const UniquePosition kGenericSuccessor =
FromBytes(std::string(kGenericSuccessorLength, '\xAB') + '\xFF');
const UniquePosition kBigPosition =
FromBytes(std::string(kBigPositionLength - 1, '\xFF') + '\xFE' + '\xFF');
const UniquePosition kBigPositionLessTwo =
FromBytes(std::string(kBigPositionLength - 1, '\xFF') + '\xFC' + '\xFF');
const UniquePosition kBiggerPosition =
FromBytes(std::string(kBigPositionLength, '\xFF') + '\xFF');
const UniquePosition kSmallPosition = FromBytes(
std::string(kSmallPositionLength - 1, '\x00') + '\x01' + '\xFF');
const UniquePosition kSmallPositionPlusOne = FromBytes(
std::string(kSmallPositionLength - 1, '\x00') + '\x02' + '\xFF');
const UniquePosition kHugePosition = FromBytes(
std::string(UniquePosition::kCompressBytesThreshold, '\xFF') + '\xAB');
const std::array<UniquePosition, 7> kPositionArray = {
kGenericPredecessor, kGenericSuccessor, kBigPosition,
kBigPositionLessTwo, kBiggerPosition, kSmallPosition,
kSmallPositionPlusOne};
const std::array<UniquePosition, 7> kSortedPositionArray = {
kSmallPosition, kSmallPositionPlusOne, kGenericPredecessor,
kGenericSuccessor, kBigPositionLessTwo, kBigPosition,
kBiggerPosition};
};
static constexpr uint8_t kMinSuffix[] = {
'\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00',
'\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00',
'\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00',
'\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x01'};
static_assert(std::size(kMinSuffix) == UniquePosition::kSuffixLength,
"Wrong size of kMinSuffix.");
static constexpr uint8_t kMaxSuffix[] = {
u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF',
u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF',
u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF',
u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF', u'\xFF'};
static_assert(std::size(kMaxSuffix) == UniquePosition::kSuffixLength,
"Wrong size of kMaxSuffix.");
static constexpr uint8_t kNormalSuffix[] = {
'\x68', '\x44', '\x6C', '\x6B', '\x32', '\x58', '\x78',
'\x34', '\x69', '\x70', '\x46', '\x34', '\x79', '\x49',
'\x44', '\x4F', '\x66', '\x4C', '\x58', '\x41', '\x31',
'\x34', '\x68', '\x59', '\x56', '\x43', '\x6F', '\x3D'};
static_assert(std::size(kNormalSuffix) == UniquePosition::kSuffixLength,
"Wrong size of kNormalSuffix.");
::testing::AssertionResult LessThan(const char* m_expr,
const char* n_expr,
const UniquePosition& m,
const UniquePosition& n) {
if (m.LessThan(n)) {
return ::testing::AssertionSuccess();
}
return ::testing::AssertionFailure()
<< m_expr << " is not less than " << n_expr << " ("
<< m.ToDebugString() << " and " << n.ToDebugString() << ")";
}
::testing::AssertionResult Equals(const char* m_expr,
const char* n_expr,
const UniquePosition& m,
const UniquePosition& n) {
if (m.Equals(n)) {
return ::testing::AssertionSuccess();
}
return ::testing::AssertionFailure()
<< m_expr << " is not equal to " << n_expr << " (" << m.ToDebugString()
<< " != " << n.ToDebugString() << ")";
}
// Test that the code can read the uncompressed serialization format.
TEST_F(UniquePositionTest, DeserializeObsoleteUncompressedPosition) {
// We no longer support the encoding data in this format. This hard-coded
// input is a serialization of kGenericPredecessor created by an older version
// of this code.
const char kSerializedCstr[] = {
'\x0a', '\x1f', '\x23', '\x23', '\x23', '\x23', '\x23', '\x23', '\x23',
'\x23', '\x23', '\x23', '\x23', '\x23', '\x23', '\x23', '\x23', '\x23',
'\x23', '\x23', '\x23', '\x23', '\x23', '\x23', '\x23', '\x23', '\x23',
'\x23', '\x23', '\x23', '\x23', '\x23', '\xff'};
const std::string serialized(kSerializedCstr, sizeof(kSerializedCstr));
sync_pb::UniquePosition proto;
proto.ParseFromString(serialized);
// Double-check that this test is testing what we think it tests.
EXPECT_TRUE(proto.has_value());
EXPECT_FALSE(proto.has_compressed_value());
EXPECT_FALSE(proto.has_uncompressed_length());
UniquePosition pos = UniquePosition::FromProto(proto);
EXPECT_PRED_FORMAT2(Equals, kGenericPredecessor, pos);
}
// Test that the code can read the gzip serialization format.
TEST_F(UniquePositionTest, DeserializeObsoleteGzippedPosition) {
// We no longer support the encoding data in this format. This hard-coded
// input is a serialization of kHugePosition created by an older version of
// this code.
const char kSerializedCstr[] = {
'\x12', '\x0d', '\x78', '\x9c', '\xfb', '\xff', '\x7f', '\x60', '\xc1',
'\x6a', '\x00', '\xa2', '\x4c', '\x80', '\x2c', '\x18', '\x81', '\x01'};
const std::string serialized(kSerializedCstr, sizeof(kSerializedCstr));
sync_pb::UniquePosition proto;
proto.ParseFromString(serialized);
// Double-check that this test is testing what we think it tests.
EXPECT_FALSE(proto.has_value());
EXPECT_TRUE(proto.has_compressed_value());
EXPECT_TRUE(proto.has_uncompressed_length());
UniquePosition pos = UniquePosition::FromProto(proto);
EXPECT_PRED_FORMAT2(Equals, kHugePosition, pos);
}
TEST_F(UniquePositionTest, UncompressTooLongRepeatingDigit) {
// First 4 bytes represent the digit to expand, and the next 4 bytes is the
// number of bytes.
constexpr char kSerializedCstr[] = {'\x12', '\x12', '\x12', '\x12',
'\x88', '\x88', '\x88', '\x88'};
sync_pb::UniquePosition proto;
proto.set_custom_compressed_v1(kSerializedCstr, sizeof(kSerializedCstr));
proto.mutable_custom_compressed_v1()->append(
base::RandBytesAsString(UniquePosition::kSuffixLength));
UniquePosition unique_position = UniquePosition::FromProto(proto);
EXPECT_FALSE(unique_position.IsValid());
}
class RelativePositioningTest : public UniquePositionTest {};
struct PositionLessThan {
bool operator()(const UniquePosition& a, const UniquePosition& b) {
return a.LessThan(b);
}
};
// Returns true iff the given position's suffix matches the input parameter.
static bool IsSuffixInUse(const UniquePosition& pos,
const UniquePosition::Suffix& suffix) {
return pos.GetSuffixForTest() == suffix;
}
// Test some basic properties of comparison and equality.
TEST_F(RelativePositioningTest, ComparisonSanityTest1) {
const UniquePosition& a = kPositionArray[0];
ASSERT_TRUE(a.IsValid());
// Necessarily true for any non-invalid positions.
EXPECT_TRUE(a.Equals(a));
EXPECT_FALSE(a.LessThan(a));
}
// Test some more properties of comparison and equality.
TEST_F(RelativePositioningTest, ComparisonSanityTest2) {
const UniquePosition& a = kPositionArray[0];
const UniquePosition& b = kPositionArray[1];
// These should pass for the specific a and b we have chosen (a < b).
EXPECT_FALSE(a.Equals(b));
EXPECT_TRUE(a.LessThan(b));
EXPECT_FALSE(b.LessThan(a));
}
// Exercise comparision functions by sorting and re-sorting the list.
TEST_F(RelativePositioningTest, SortPositions) {
std::array<UniquePosition, 7> positions;
ASSERT_EQ(kPositionArray.size(), kSortedPositionArray.size());
base::span(positions).copy_from(kPositionArray);
std::ranges::sort(positions, PositionLessThan());
for (size_t i = 0; i < kPositionArray.size(); ++i) {
EXPECT_TRUE(positions[i].Equals(kSortedPositionArray[i]))
<< "i: " << i << ", " << positions[i].ToDebugString()
<< " != " << kSortedPositionArray[i].ToDebugString();
}
}
// Some more exercise for the comparison function.
TEST_F(RelativePositioningTest, ReverseSortPositions) {
std::array<UniquePosition, 7> positions;
ASSERT_EQ(kPositionArray.size(), kSortedPositionArray.size());
ASSERT_EQ(kPositionArray.size(), positions.size());
base::span(positions).copy_from(kPositionArray);
std::ranges::reverse(positions);
std::ranges::sort(positions, PositionLessThan());
for (size_t i = 0; i < kPositionArray.size(); ++i) {
EXPECT_TRUE(positions[i].Equals(kSortedPositionArray[i]))
<< "i: " << i << ", " << positions[i].ToDebugString()
<< " != " << kSortedPositionArray[i].ToDebugString();
}
}
class PositionInsertTest
: public RelativePositioningTest,
public ::testing::WithParamInterface<UniquePosition::Suffix> {};
// Exercise InsertBetween with various insertion operations.
TEST_P(PositionInsertTest, InsertBetween) {
const UniquePosition::Suffix suffix = GetParam();
ASSERT_TRUE(UniquePosition::IsValidSuffix(suffix));
for (size_t i = 0; i < kSortedPositionArray.size(); ++i) {
const UniquePosition& predecessor = kSortedPositionArray[i];
// Verify our suffixes are unique before we continue.
if (IsSuffixInUse(predecessor, suffix)) {
continue;
}
for (size_t j = i + 1; j < kSortedPositionArray.size(); ++j) {
const UniquePosition& successor = kSortedPositionArray[j];
// Another guard against non-unique suffixes.
if (IsSuffixInUse(successor, suffix)) {
continue;
}
UniquePosition midpoint =
UniquePosition::Between(predecessor, successor, suffix);
EXPECT_PRED_FORMAT2(LessThan, predecessor, midpoint);
EXPECT_PRED_FORMAT2(LessThan, midpoint, successor);
}
}
}
TEST_P(PositionInsertTest, InsertBefore) {
const UniquePosition::Suffix suffix = GetParam();
for (size_t i = 0; i < kSortedPositionArray.size(); ++i) {
const UniquePosition& successor = kSortedPositionArray[i];
// Verify our suffixes are unique before we continue.
if (IsSuffixInUse(successor, suffix)) {
continue;
}
UniquePosition before = UniquePosition::Before(successor, suffix);
EXPECT_PRED_FORMAT2(LessThan, before, successor);
}
}
TEST_P(PositionInsertTest, InsertAfter) {
const UniquePosition::Suffix suffix = GetParam();
for (size_t i = 0; i < kSortedPositionArray.size(); ++i) {
const UniquePosition& predecessor = kSortedPositionArray[i];
// Verify our suffixes are unique before we continue.
if (IsSuffixInUse(predecessor, suffix)) {
continue;
}
UniquePosition after = UniquePosition::After(predecessor, suffix);
EXPECT_PRED_FORMAT2(LessThan, predecessor, after);
}
}
TEST_P(PositionInsertTest, StressInsertAfter) {
// Use two different suffixes to not violate our suffix uniqueness guarantee.
const UniquePosition::Suffix suffix_a = GetParam();
UniquePosition::Suffix suffix_b = suffix_a;
suffix_b[10] = suffix_b[10] ^ 0xff;
UniquePosition pos = UniquePosition::InitialPosition(suffix_a);
for (int i = 0; i < 1024; i++) {
const UniquePosition::Suffix& suffix = (i % 2 == 0) ? suffix_b : suffix_a;
UniquePosition next_pos = UniquePosition::After(pos, suffix);
ASSERT_PRED_FORMAT2(LessThan, pos, next_pos);
pos = next_pos;
}
VLOG(1) << "Length: " << GetLength(pos);
}
TEST_P(PositionInsertTest, StressInsertBefore) {
// Use two different suffixes to not violate our suffix uniqueness guarantee.
const UniquePosition::Suffix& suffix_a = GetParam();
UniquePosition::Suffix suffix_b = suffix_a;
suffix_b[10] = suffix_b[10] ^ 0xff;
UniquePosition pos = UniquePosition::InitialPosition(suffix_a);
for (int i = 0; i < 1024; i++) {
const UniquePosition::Suffix& suffix = (i % 2 == 0) ? suffix_b : suffix_a;
UniquePosition prev_pos = UniquePosition::Before(pos, suffix);
ASSERT_PRED_FORMAT2(LessThan, prev_pos, pos);
pos = prev_pos;
}
VLOG(1) << "Length: " << GetLength(pos);
}
TEST_P(PositionInsertTest, StressLeftInsertBetween) {
// Use different suffixes to not violate our suffix uniqueness guarantee.
const UniquePosition::Suffix& suffix_a = GetParam();
UniquePosition::Suffix suffix_b = suffix_a;
suffix_b[10] = suffix_b[10] ^ 0xff;
UniquePosition::Suffix suffix_c = suffix_a;
suffix_c[10] = suffix_c[10] ^ 0xf0;
UniquePosition right_pos = UniquePosition::InitialPosition(suffix_c);
UniquePosition left_pos = UniquePosition::Before(right_pos, suffix_a);
for (int i = 0; i < 1024; i++) {
const UniquePosition::Suffix& suffix = (i % 2 == 0) ? suffix_b : suffix_a;
UniquePosition new_pos =
UniquePosition::Between(left_pos, right_pos, suffix);
ASSERT_PRED_FORMAT2(LessThan, left_pos, new_pos);
ASSERT_PRED_FORMAT2(LessThan, new_pos, right_pos);
left_pos = new_pos;
}
VLOG(1) << "Lengths: " << GetLength(left_pos) << ", " << GetLength(right_pos);
}
TEST_P(PositionInsertTest, StressRightInsertBetween) {
// Use different suffixes to not violate our suffix uniqueness guarantee.
const UniquePosition::Suffix& suffix_a = GetParam();
UniquePosition::Suffix suffix_b = suffix_a;
suffix_b[10] = suffix_b[10] ^ 0xff;
UniquePosition::Suffix suffix_c = suffix_a;
suffix_c[10] = suffix_c[10] ^ 0xf0;
UniquePosition right_pos = UniquePosition::InitialPosition(suffix_a);
UniquePosition left_pos = UniquePosition::Before(right_pos, suffix_c);
for (int i = 0; i < 1024; i++) {
const UniquePosition::Suffix& suffix = (i % 2 == 0) ? suffix_b : suffix_a;
UniquePosition new_pos =
UniquePosition::Between(left_pos, right_pos, suffix);
ASSERT_PRED_FORMAT2(LessThan, left_pos, new_pos);
ASSERT_PRED_FORMAT2(LessThan, new_pos, right_pos);
right_pos = new_pos;
}
VLOG(1) << "Lengths: " << GetLength(left_pos) << ", " << GetLength(right_pos);
}
// Generates suffixes similar to those generated by the legacy Directory.
// This may become obsolete if the suffix generation code is modified.
class SuffixGenerator {
public:
explicit SuffixGenerator(const std::string& cache_guid)
: cache_guid_(cache_guid) {}
UniquePosition::Suffix NextSuffix() {
// This is not entirely realistic, but that should be OK. The current
// suffix format is a base64'ed SHA1 hash, which should be fairly close to
// random anyway.
std::string input = cache_guid_ + base::NumberToString(next_id_--);
std::string suffix_str =
base::Base64Encode(base::SHA1Hash(base::as_byte_span(input)));
UniquePosition::Suffix suffix;
std::ranges::copy(suffix_str, suffix.begin());
return suffix;
}
private:
const std::string cache_guid_;
int64_t next_id_ = -65535;
};
// Cache guids generated in the same style as real clients.
static const char kCacheGuidStr1[] = "tuiWdG8hV+8y4RT9N5Aikg==";
static const char kCacheGuidStr2[] = "yaKb7zHtY06aue9a0vlZgw==";
class PositionScenariosTest : public UniquePositionTest {
public:
PositionScenariosTest()
: generator1_(std::string(kCacheGuidStr1, std::size(kCacheGuidStr1) - 1)),
generator2_(
std::string(kCacheGuidStr2, std::size(kCacheGuidStr2) - 1)) {}
UniquePosition::Suffix NextClient1Suffix() {
return generator1_.NextSuffix();
}
UniquePosition::Suffix NextClient2Suffix() {
return generator2_.NextSuffix();
}
private:
SuffixGenerator generator1_;
SuffixGenerator generator2_;
};
// One client creating new bookmarks, always inserting at the end.
TEST_F(PositionScenariosTest, OneClientInsertAtEnd) {
UniquePosition pos = UniquePosition::InitialPosition(NextClient1Suffix());
for (int i = 0; i < 1024; i++) {
const UniquePosition::Suffix suffix = NextClient1Suffix();
UniquePosition new_pos = UniquePosition::After(pos, suffix);
ASSERT_PRED_FORMAT2(LessThan, pos, new_pos);
pos = new_pos;
}
VLOG(1) << "Length: " << GetLength(pos);
// Normally we wouldn't want to make an assertion about the internal
// representation of our data, but we make an exception for this case.
// If this scenario causes lengths to explode, we have a big problem.
EXPECT_LT(GetLength(pos), 500U);
}
// Two clients alternately inserting entries at the end, with a strong
// bias towards insertions by the first client.
TEST_F(PositionScenariosTest, TwoClientsInsertAtEnd_A) {
UniquePosition pos = UniquePosition::InitialPosition(NextClient1Suffix());
for (int i = 0; i < 1024; i++) {
UniquePosition::Suffix suffix;
if (i % 5 == 0) {
suffix = NextClient2Suffix();
} else {
suffix = NextClient1Suffix();
}
UniquePosition new_pos = UniquePosition::After(pos, suffix);
ASSERT_PRED_FORMAT2(LessThan, pos, new_pos);
pos = new_pos;
}
VLOG(1) << "Length: " << GetLength(pos);
EXPECT_LT(GetLength(pos), 500U);
}
// Two clients alternately inserting entries at the end.
TEST_F(PositionScenariosTest, TwoClientsInsertAtEnd_B) {
UniquePosition pos = UniquePosition::InitialPosition(NextClient1Suffix());
for (int i = 0; i < 1024; i++) {
UniquePosition::Suffix suffix;
if (i % 2 == 0) {
suffix = NextClient1Suffix();
} else {
suffix = NextClient2Suffix();
}
UniquePosition new_pos = UniquePosition::After(pos, suffix);
ASSERT_PRED_FORMAT2(LessThan, pos, new_pos);
pos = new_pos;
}
VLOG(1) << "Length: " << GetLength(pos);
EXPECT_LT(GetLength(pos), 500U);
}
INSTANTIATE_TEST_SUITE_P(MinSuffix,
PositionInsertTest,
::testing::Values(std::to_array(kMinSuffix)));
INSTANTIATE_TEST_SUITE_P(MaxSuffix,
PositionInsertTest,
::testing::Values(std::to_array(kMaxSuffix)));
INSTANTIATE_TEST_SUITE_P(NormalSuffix,
PositionInsertTest,
::testing::Values(std::to_array(kNormalSuffix)));
class PositionFromIntTest : public UniquePositionTest {
public:
PositionFromIntTest()
: generator_(std::string(kCacheGuidStr1, std::size(kCacheGuidStr1) - 1)) {
}
protected:
static constexpr auto kTestValues =
std::to_array<int64_t>({0LL,
1LL,
-1LL,
2LL,
-2LL,
3LL,
-3LL,
0x79LL,
-0x79LL,
0x80LL,
-0x80LL,
0x81LL,
-0x81LL,
0xFELL,
-0xFELL,
0xFFLL,
-0xFFLL,
0x100LL,
-0x100LL,
0x101LL,
-0x101LL,
0xFA1AFELL,
-0xFA1AFELL,
0xFFFFFFFELL,
-0xFFFFFFFELL,
0xFFFFFFFFLL,
-0xFFFFFFFFLL,
0x100000000LL,
-0x100000000LL,
0x100000001LL,
-0x100000001LL,
0xFFFFFFFFFFLL,
-0xFFFFFFFFFFLL,
0x112358132134LL,
-0x112358132134LL,
0xFEFFBEEFABC1234LL,
-0xFEFFBEEFABC1234LL,
INT64_MAX,
INT64_MIN,
INT64_MIN + 1,
INT64_MAX - 1});
UniquePosition::Suffix NextSuffix() { return generator_.NextSuffix(); }
private:
SuffixGenerator generator_;
};
TEST_F(PositionFromIntTest, IsValid) {
for (size_t i = 0; i < kTestValues.size(); ++i) {
const UniquePosition pos =
UniquePosition::FromInt64(kTestValues[i], NextSuffix());
EXPECT_TRUE(pos.IsValid()) << "i = " << i << "; " << pos.ToDebugString();
}
}
template <typename T, typename LessThan = std::less<T>>
class IndexedLessThan {
public:
explicit IndexedLessThan(base::span<const T> values) : values_(values) {}
bool operator()(size_t i1, size_t i2) {
return less_than_(values_[i1], values_[i2]);
}
private:
base::raw_span<const T> values_;
LessThan less_than_;
};
TEST_F(PositionFromIntTest, ConsistentOrdering) {
std::array<UniquePosition, kTestValues.size()> positions;
std::vector<size_t> original_ordering(kTestValues.size());
std::vector<size_t> int64_ordering(kTestValues.size());
std::vector<size_t> position_ordering(kTestValues.size());
for (size_t i = 0; i < kTestValues.size(); ++i) {
positions[i] = UniquePosition::FromInt64(kTestValues[i], NextSuffix());
original_ordering[i] = int64_ordering[i] = position_ordering[i] = i;
}
std::ranges::sort(int64_ordering, IndexedLessThan<int64_t>(kTestValues));
std::ranges::sort(
position_ordering,
IndexedLessThan<UniquePosition, PositionLessThan>(positions));
EXPECT_NE(original_ordering, int64_ordering);
EXPECT_EQ(int64_ordering, position_ordering);
}
class CompressedPositionTest : public UniquePositionTest {
public:
CompressedPositionTest() {
positions_.push_back(MakePosition( // Prefix starts with 256 0x00s
std::string("\x00\x00\x00\x00\xFF\xFF\xFE\xFF"
"\x01",
9),
MakeSuffix('\x04')));
positions_.push_back(MakePosition( // Prefix starts with four 0x00s
std::string("\x00\x00\x00\x00\xFF\xFF\xFF\xFB"
"\x01",
9),
MakeSuffix('\x03')));
positions_.push_back(MakePosition( // Prefix starts with four 0xFFs
std::string("\xFF\xFF\xFF\xFF\x00\x00\x00\x04"
"\x01",
9),
MakeSuffix('\x01')));
positions_.push_back(MakePosition( // Prefix starts with 256 0xFFs
std::string("\xFF\xFF\xFF\xFF\x00\x00\x01\x00"
"\x01",
9),
MakeSuffix('\x02')));
}
private:
UniquePosition MakePosition(const std::string& compressed_prefix,
const std::string& compressed_suffix);
std::string MakeSuffix(char unique_value);
protected:
std::vector<UniquePosition> positions_;
};
UniquePosition CompressedPositionTest::MakePosition(
const std::string& compressed_prefix,
const std::string& compressed_suffix) {
sync_pb::UniquePosition proto;
proto.set_custom_compressed_v1(
std::string(compressed_prefix + compressed_suffix));
return UniquePosition::FromProto(proto);
}
std::string CompressedPositionTest::MakeSuffix(char unique_value) {
// We're dealing in compressed positions in this test. That means the
// suffix should be compressed, too. To avoid complication, we use suffixes
// that don't have any repeating digits, and therefore are identical in
// compressed and uncompressed form.
std::string suffix;
for (size_t i = 0; i < UniquePosition::kSuffixLength; ++i) {
suffix.push_back(static_cast<char>(i));
}
suffix[UniquePosition::kSuffixLength - 1] = unique_value;
return suffix;
}
// Make sure that serialization and deserialization routines are correct.
TEST_F(CompressedPositionTest, SerializeAndDeserialize) {
for (std::vector<UniquePosition>::const_iterator it = positions_.begin();
it != positions_.end(); ++it) {
SCOPED_TRACE("iteration: " + it->ToDebugString());
UniquePosition deserialized = UniquePosition::FromProto(it->ToProto());
EXPECT_PRED_FORMAT2(Equals, *it, deserialized);
}
}
// Test that deserialization failures of protobufs where we know none of its
// fields is not catastrophic. This may happen if all the fields currently
// known to this client become deprecated in the future.
TEST_F(CompressedPositionTest, DeserializeProtobufFromTheFuture) {
sync_pb::UniquePosition proto;
UniquePosition deserialized = UniquePosition::FromProto(proto);
EXPECT_FALSE(deserialized.IsValid());
}
// Make sure the comparison functions are working correctly.
// This requires values in the test harness to be hard-coded in ascending order.
TEST_F(CompressedPositionTest, OrderingTest) {
for (size_t i = 0; i < positions_.size() - 1; ++i) {
EXPECT_PRED_FORMAT2(LessThan, positions_[i], positions_[i + 1]);
}
}
} // namespace
} // namespace syncer
|