1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/sync/service/sync_service_crypto.h"
#include <utility>
#include "base/base64.h"
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/metrics/histogram_functions.h"
#include "base/strings/to_string.h"
#include "base/task/sequenced_task_runner.h"
#include "components/os_crypt/sync/os_crypt.h"
#include "components/sync/base/passphrase_enums.h"
#include "components/sync/engine/nigori/nigori.h"
#include "components/sync/engine/sync_string_conversions.h"
#include "components/sync/protocol/nigori_specifics.pb.h"
#include "components/sync/service/sync_service.h"
#include "components/sync/service/trusted_vault_histograms.h"
namespace syncer {
namespace {
// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused. Keep in sync with
// TrustedVaultFetchKeysAttempt in
// tools/metrics/histograms/metadata/sync/enums.xml.
// LINT.IfChange(TrustedVaultFetchKeysAttempt)
enum class TrustedVaultFetchKeysAttemptForUMA {
kFirstAttempt = 0,
kSecondAttempt = 1,
kMaxValue = kSecondAttempt
};
// LINT.ThenChange(/tools/metrics/histograms/metadata/sync/enums.xml:TrustedVaultFetchKeysAttempt)
// A SyncEncryptionHandler::Observer implementation that simply posts all calls
// to another task runner.
class SyncEncryptionObserverProxy : public SyncEncryptionHandler::Observer {
public:
SyncEncryptionObserverProxy(
base::WeakPtr<SyncEncryptionHandler::Observer> observer,
scoped_refptr<base::SequencedTaskRunner> task_runner)
: observer_(observer), task_runner_(std::move(task_runner)) {}
void OnPassphraseRequired(
const KeyDerivationParams& key_derivation_params,
const sync_pb::EncryptedData& pending_keys) override {
task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&SyncEncryptionHandler::Observer::OnPassphraseRequired,
observer_, key_derivation_params, pending_keys));
}
void OnPassphraseAccepted() override {
task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&SyncEncryptionHandler::Observer::OnPassphraseAccepted,
observer_));
}
void OnTrustedVaultKeyRequired() override {
task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
&SyncEncryptionHandler::Observer::OnTrustedVaultKeyRequired,
observer_));
}
void OnTrustedVaultKeyAccepted() override {
task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
&SyncEncryptionHandler::Observer::OnTrustedVaultKeyAccepted,
observer_));
}
void OnEncryptedTypesChanged(DataTypeSet encrypted_types,
bool encrypt_everything) override {
task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
&SyncEncryptionHandler::Observer::OnEncryptedTypesChanged,
observer_, encrypted_types, encrypt_everything));
}
void OnCryptographerStateChanged(Cryptographer* cryptographer,
bool has_pending_keys) override {
// A null cryptographer is passed to avoid usage from another sequence.
task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
&SyncEncryptionHandler::Observer::OnCryptographerStateChanged,
observer_, /*cryptographer=*/nullptr, has_pending_keys));
}
void OnPassphraseTypeChanged(PassphraseType type,
base::Time passphrase_time) override {
task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
&SyncEncryptionHandler::Observer::OnPassphraseTypeChanged,
observer_, type, passphrase_time));
}
private:
base::WeakPtr<SyncEncryptionHandler::Observer> observer_;
scoped_refptr<base::SequencedTaskRunner> task_runner_;
};
// Checks if `nigori` can be used to decrypt the given pending keys. Returns
// true if decryption was successful. Returns false otherwise. Must be called
// with non-empty pending keys cache.
bool CheckNigoriAgainstPendingKeys(const Nigori& nigori,
const sync_pb::EncryptedData& pending_keys) {
DCHECK(pending_keys.has_blob());
std::string plaintext;
bool decrypt_result = nigori.Decrypt(pending_keys.blob(), &plaintext);
DVLOG_IF(1, !decrypt_result) << "Passphrase failed to decrypt pending keys.";
return decrypt_result;
}
// Reads Nigori from bootstrap token. Returns nullptr if bootstrap token empty
// or corrupted.
std::unique_ptr<Nigori> ReadNigoriFromBootstrapToken(
const std::string& bootstrap_token) {
if (bootstrap_token.empty()) {
return nullptr;
}
std::string decoded_key;
if (!base::Base64Decode(bootstrap_token, &decoded_key)) {
return nullptr;
}
std::string decrypted_key;
if (!OSCrypt::DecryptString(decoded_key, &decrypted_key)) {
return nullptr;
}
sync_pb::NigoriKey key;
if (!key.ParseFromString(decrypted_key)) {
return nullptr;
}
return Nigori::CreateByImport(key.deprecated_user_key(), key.encryption_key(),
key.mac_key());
}
// Serializes `nigori` as bootstrap token. Returns empty string in case of
// crypto/serialization failures.
std::string SerializeNigoriAsBootstrapToken(const Nigori& nigori) {
sync_pb::NigoriKey proto;
nigori.ExportKeys(proto.mutable_deprecated_user_key(),
proto.mutable_encryption_key(), proto.mutable_mac_key());
const std::string serialized_key = proto.SerializeAsString();
if (serialized_key.empty()) {
return std::string();
}
std::string encrypted_key;
if (!OSCrypt::EncryptString(serialized_key, &encrypted_key)) {
return std::string();
}
return base::Base64Encode(encrypted_key);
}
} // namespace
SyncServiceCrypto::State::State() = default;
SyncServiceCrypto::State::~State() = default;
SyncServiceCrypto::SyncServiceCrypto(
Delegate* delegate,
trusted_vault::TrustedVaultClient* trusted_vault_client)
: delegate_(delegate), trusted_vault_client_(trusted_vault_client) {
DCHECK(delegate_);
DCHECK(trusted_vault_client_);
trusted_vault_client_->AddObserver(this);
}
SyncServiceCrypto::~SyncServiceCrypto() = default;
void SyncServiceCrypto::Reset() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
state_ = State();
}
void SyncServiceCrypto::StopObservingTrustedVaultClient() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
trusted_vault_client_->RemoveObserver(this);
}
base::Time SyncServiceCrypto::GetExplicitPassphraseTime() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return state_.cached_explicit_passphrase_time;
}
bool SyncServiceCrypto::IsPassphraseRequired() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
switch (state_.required_user_action) {
case RequiredUserAction::kUnknownDuringInitialization:
case RequiredUserAction::kNone:
case RequiredUserAction::kFetchingTrustedVaultKeys:
case RequiredUserAction::kTrustedVaultKeyRequired:
case RequiredUserAction::kTrustedVaultKeyRequiredButFetching:
case RequiredUserAction::kTrustedVaultRecoverabilityDegraded:
return false;
case RequiredUserAction::kPassphraseRequired:
return true;
}
NOTREACHED();
}
bool SyncServiceCrypto::IsTrustedVaultKeyRequired() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return state_.required_user_action ==
RequiredUserAction::kTrustedVaultKeyRequired ||
state_.required_user_action ==
RequiredUserAction::kTrustedVaultKeyRequiredButFetching;
}
bool SyncServiceCrypto::IsTrustedVaultRecoverabilityDegraded() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return state_.required_user_action ==
RequiredUserAction::kTrustedVaultRecoverabilityDegraded;
}
bool SyncServiceCrypto::IsEncryptEverythingEnabled() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(state_.engine);
return state_.encrypt_everything;
}
void SyncServiceCrypto::SetEncryptionPassphrase(const std::string& passphrase) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// This should only be called when the engine has been initialized.
DCHECK(state_.engine);
// We should never be called with an empty passphrase.
DCHECK(!passphrase.empty());
switch (state_.required_user_action) {
case RequiredUserAction::kUnknownDuringInitialization:
case RequiredUserAction::kNone:
case RequiredUserAction::kTrustedVaultRecoverabilityDegraded:
break;
case RequiredUserAction::kPassphraseRequired:
case RequiredUserAction::kFetchingTrustedVaultKeys:
case RequiredUserAction::kTrustedVaultKeyRequired:
case RequiredUserAction::kTrustedVaultKeyRequiredButFetching:
// Cryptographer has pending keys.
// TODO(crbug.com/40904402): verify this is not reachable anymore and
// remove NotFatalUntil.
NOTREACHED(base::NotFatalUntil::M140)
<< "Can not set explicit passphrase when decryption is needed.";
return;
}
DVLOG(1) << "Setting explicit passphrase for encryption.";
// SetEncryptionPassphrase() should never be called if we are currently
// encrypted with an explicit passphrase.
DCHECK(!IsExplicitPassphrase(
GetPassphraseType().value_or(PassphraseType::kKeystorePassphrase)));
const auto key_derivation_params =
KeyDerivationParams::CreateForScrypt(Nigori::GenerateScryptSalt());
state_.engine->SetEncryptionPassphrase(passphrase, key_derivation_params);
// Immediately store new bootstrap token.
std::unique_ptr<Nigori> nigori =
Nigori::CreateByDerivation(key_derivation_params, passphrase);
DCHECK(nigori);
delegate_->SetEncryptionBootstrapToken(
SerializeNigoriAsBootstrapToken(*nigori));
}
bool SyncServiceCrypto::SetDecryptionPassphrase(const std::string& passphrase) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// This should only be called when the engine has been initialized.
DCHECK(state_.engine);
// We should never be called with an empty passphrase.
DCHECK(!passphrase.empty());
// This should only be called when we have cached pending keys.
DCHECK(state_.cached_pending_keys.has_blob());
// For types other than CUSTOM_PASSPHRASE, we should be using the old PBKDF2
// key derivation method.
if (GetPassphraseType() != PassphraseType::kCustomPassphrase) {
DCHECK_EQ(state_.passphrase_key_derivation_params.method(),
KeyDerivationMethod::PBKDF2_HMAC_SHA1_1003);
}
std::unique_ptr<Nigori> nigori = Nigori::CreateByDerivation(
state_.passphrase_key_derivation_params, passphrase);
DCHECK(nigori);
// Update the bootstrap token immediately, this is harmless as bootstrap token
// is ignored if it doesn't contain the right key.
delegate_->SetEncryptionBootstrapToken(
SerializeNigoriAsBootstrapToken(*nigori));
return SetDecryptionKeyWithoutUpdatingBootstrapToken(std::move(nigori));
}
void SyncServiceCrypto::SetExplicitPassphraseDecryptionNigoriKey(
std::unique_ptr<Nigori> nigori) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(nigori);
if (state_.required_user_action != RequiredUserAction::kPassphraseRequired) {
// Passphrase not required, ignore the call.
return;
}
// Update the bootstrap token immediately, this is harmless as bootstrap token
// is ignored if it doesn't contain the right key.
delegate_->SetEncryptionBootstrapToken(
SerializeNigoriAsBootstrapToken(*nigori));
if (state_.engine) {
// Engine being initialized isn't a precondition of this method. In case
// it's not initialized, decryption passphrase will be set later, upon
// initialization.
SetDecryptionKeyWithoutUpdatingBootstrapToken(std::move(nigori));
}
}
std::unique_ptr<Nigori>
SyncServiceCrypto::GetExplicitPassphraseDecryptionNigoriKey() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return ReadNigoriFromBootstrapToken(delegate_->GetEncryptionBootstrapToken());
}
bool SyncServiceCrypto::IsTrustedVaultKeyRequiredStateKnown() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
switch (state_.required_user_action) {
case RequiredUserAction::kUnknownDuringInitialization:
case RequiredUserAction::kFetchingTrustedVaultKeys:
return false;
case RequiredUserAction::kNone:
case RequiredUserAction::kPassphraseRequired:
case RequiredUserAction::kTrustedVaultKeyRequired:
case RequiredUserAction::kTrustedVaultKeyRequiredButFetching:
case RequiredUserAction::kTrustedVaultRecoverabilityDegraded:
return true;
}
NOTREACHED();
}
std::optional<PassphraseType> SyncServiceCrypto::GetPassphraseType() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return delegate_->GetPassphraseType();
}
void SyncServiceCrypto::SetSyncEngine(const CoreAccountInfo& account_info,
SyncEngine* engine) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
CHECK(engine);
CHECK(!state_.engine);
state_.account_info = account_info;
state_.engine = engine;
switch (state_.required_user_action) {
case RequiredUserAction::kNone:
// It was already established during initialization that there's nothing
// to do, which is possible for some passphrase types, but not others
// (including `kTrustedVaultPassphrase`.
DCHECK(GetPassphraseType() != PassphraseType::kTrustedVaultPassphrase);
break;
case RequiredUserAction::kUnknownDuringInitialization:
// Since there was no state changes during engine initialization, now the
// state is known and no user action required.
UpdateRequiredUserActionAndNotify(RequiredUserAction::kNone);
RefreshIsRecoverabilityDegraded();
break;
case RequiredUserAction::kFetchingTrustedVaultKeys:
// This indicates OnTrustedVaultKeyRequired() was called as part of the
// engine's initialization.
FetchTrustedVaultKeys(/*is_second_fetch_attempt=*/false);
break;
case RequiredUserAction::kPassphraseRequired:
// Attempt decryption with bootstrap token if necessary.
MaybeSetDecryptionKeyFromBootstrapToken();
break;
case RequiredUserAction::kTrustedVaultKeyRequired:
case RequiredUserAction::kTrustedVaultKeyRequiredButFetching:
case RequiredUserAction::kTrustedVaultRecoverabilityDegraded:
// Neither keys nor the recoverability state are fetched during engine
// initialization.
NOTREACHED();
}
}
std::unique_ptr<SyncEncryptionHandler::Observer>
SyncServiceCrypto::GetEncryptionObserverProxy() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return std::make_unique<SyncEncryptionObserverProxy>(
weak_factory_.GetWeakPtr(),
base::SequencedTaskRunner::GetCurrentDefault());
}
DataTypeSet SyncServiceCrypto::GetAllEncryptedDataTypes() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(state_.encrypted_types.HasAll(AlwaysEncryptedUserTypes()));
// We may be called during the setup process before we're
// initialized. In this case, we default to the sensitive types.
return state_.encrypted_types;
}
bool SyncServiceCrypto::HasCryptoError() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// This determines whether DataTypeManager should issue crypto errors for
// encrypted datatypes. This may differ from whether the UI represents the
// error state or not.
switch (state_.required_user_action) {
case RequiredUserAction::kUnknownDuringInitialization:
case RequiredUserAction::kNone:
case RequiredUserAction::kTrustedVaultRecoverabilityDegraded:
return false;
case RequiredUserAction::kFetchingTrustedVaultKeys:
case RequiredUserAction::kTrustedVaultKeyRequired:
case RequiredUserAction::kTrustedVaultKeyRequiredButFetching:
case RequiredUserAction::kPassphraseRequired:
return true;
}
NOTREACHED();
}
void SyncServiceCrypto::OnPassphraseRequired(
const KeyDerivationParams& key_derivation_params,
const sync_pb::EncryptedData& pending_keys) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Update our cache of the cryptographer's pending keys.
state_.cached_pending_keys = pending_keys;
// Update the key derivation params to be used.
state_.passphrase_key_derivation_params = key_derivation_params;
DVLOG(1) << "Passphrase required.";
UpdateRequiredUserActionAndNotify(RequiredUserAction::kPassphraseRequired);
// Reconfigure without the encrypted types (excluded implicitly via the
// failed datatypes handler).
delegate_->ReconfigureDataTypesDueToCrypto();
// Attempt decryption with bootstrap token, so the user doesn't need to enter
// the passphrase if successful.
MaybeSetDecryptionKeyFromBootstrapToken();
}
void SyncServiceCrypto::OnPassphraseAccepted() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Clear our cache of the cryptographer's pending keys.
state_.cached_pending_keys.clear_blob();
// Reset `required_user_action` since we know we no longer require the
// passphrase.
UpdateRequiredUserActionAndNotify(RequiredUserAction::kNone);
// Make sure the data types that depend on the passphrase are started at
// this time.
delegate_->ReconfigureDataTypesDueToCrypto();
}
void SyncServiceCrypto::OnTrustedVaultKeyRequired() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// To be on the safe since, if a passphrase is required, we avoid overriding
// `state_.required_user_action`.
if (state_.required_user_action != RequiredUserAction::kNone &&
state_.required_user_action !=
RequiredUserAction::kUnknownDuringInitialization) {
return;
}
UpdateRequiredUserActionAndNotify(
RequiredUserAction::kFetchingTrustedVaultKeys);
if (!state_.engine) {
// If SetSyncEngine() hasn't been called yet, it means
// OnTrustedVaultKeyRequired() was called as part of the engine's
// initialization. Fetching the keys is not useful right now because there
// is no engine to feed the keys to, so let's defer fetching until
// SetSyncEngine() is called.
return;
}
FetchTrustedVaultKeys(/*is_second_fetch_attempt=*/false);
}
void SyncServiceCrypto::OnTrustedVaultKeyAccepted() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
switch (state_.required_user_action) {
case RequiredUserAction::kUnknownDuringInitialization:
case RequiredUserAction::kNone:
case RequiredUserAction::kPassphraseRequired:
case RequiredUserAction::kTrustedVaultRecoverabilityDegraded:
return;
case RequiredUserAction::kFetchingTrustedVaultKeys:
case RequiredUserAction::kTrustedVaultKeyRequired:
case RequiredUserAction::kTrustedVaultKeyRequiredButFetching:
break;
}
DCHECK(state_.engine);
UpdateRequiredUserActionAndNotify(RequiredUserAction::kNone);
RefreshIsRecoverabilityDegraded();
// Make sure the data types that depend on the decryption key are started at
// this time.
delegate_->ReconfigureDataTypesDueToCrypto();
}
void SyncServiceCrypto::OnEncryptedTypesChanged(DataTypeSet encrypted_types,
bool encrypt_everything) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
state_.encrypted_types = encrypted_types;
state_.encrypt_everything = encrypt_everything;
DVLOG(1) << "Encrypted types changed to "
<< DataTypeSetToDebugString(state_.encrypted_types)
<< " (encrypt everything is set to "
<< base::ToString(state_.encrypt_everything) << ")";
DCHECK(state_.encrypted_types.HasAll(AlwaysEncryptedUserTypes()));
delegate_->CryptoStateChanged();
}
void SyncServiceCrypto::OnCryptographerStateChanged(
Cryptographer* cryptographer,
bool has_pending_keys) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Do nothing.
}
void SyncServiceCrypto::OnPassphraseTypeChanged(PassphraseType type,
base::Time passphrase_time) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOG(1) << "Passphrase type changed to " << PassphraseTypeToString(type);
state_.cached_explicit_passphrase_time = passphrase_time;
// TODO(crbug.com/40923935): Also pass along the passphrase time?
delegate_->PassphraseTypeChanged(type);
// Clear recoverability degraded state in case a custom passphrase was set.
// Note that the opposite transition (into degraded recoverability) isn't
// handled here, i.e. RefreshIsRecoverabilityDegraded() isn't invoked, as
// it can be safely assumed that in practice either of
// OnTrustedVaultKeyRequired() or OnTrustedVaultKeyAccepted() will eventually
// be invoked.
if (type != PassphraseType::kTrustedVaultPassphrase &&
state_.required_user_action ==
RequiredUserAction::kTrustedVaultRecoverabilityDegraded) {
UpdateRequiredUserActionAndNotify(RequiredUserAction::kNone);
}
delegate_->CryptoStateChanged();
}
void SyncServiceCrypto::OnTrustedVaultKeysChanged() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
switch (state_.required_user_action) {
case RequiredUserAction::kUnknownDuringInitialization:
case RequiredUserAction::kNone:
case RequiredUserAction::kPassphraseRequired:
case RequiredUserAction::kTrustedVaultRecoverabilityDegraded:
// If no trusted vault keys are required, there's nothing to do. If they
// later are required, a fetch will be triggered in
// OnTrustedVaultKeyRequired().
return;
case RequiredUserAction::kFetchingTrustedVaultKeys:
case RequiredUserAction::kTrustedVaultKeyRequiredButFetching:
// If there's an ongoing fetch, FetchKeys() cannot be issued immediately
// since that violates the function precondition. However, the in-flight
// FetchKeys() may end up returning stale keys, so let's make sure
// FetchKeys() is invoked again once it becomes possible.
state_.deferred_trusted_vault_fetch_keys_pending = true;
return;
case RequiredUserAction::kTrustedVaultKeyRequired:
UpdateRequiredUserActionAndNotify(
RequiredUserAction::kTrustedVaultKeyRequiredButFetching);
break;
}
FetchTrustedVaultKeys(/*is_second_fetch_attempt=*/false);
}
void SyncServiceCrypto::OnTrustedVaultRecoverabilityChanged() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Ignore calls during engine initialization, as decoverability will be
// refreshed in SetSyncEngine().
if (!state_.engine) {
return;
}
RefreshIsRecoverabilityDegraded();
}
void SyncServiceCrypto::FetchTrustedVaultKeys(bool is_second_fetch_attempt) {
DCHECK(state_.engine);
DCHECK(state_.required_user_action ==
RequiredUserAction::kFetchingTrustedVaultKeys ||
state_.required_user_action ==
RequiredUserAction::kTrustedVaultKeyRequiredButFetching);
base::UmaHistogramEnumeration(
"Sync.TrustedVaultFetchKeysAttempt",
is_second_fetch_attempt
? TrustedVaultFetchKeysAttemptForUMA::kSecondAttempt
: TrustedVaultFetchKeysAttemptForUMA::kFirstAttempt);
if (!is_second_fetch_attempt) {
state_.deferred_trusted_vault_fetch_keys_pending = false;
}
trusted_vault_client_->FetchKeys(
state_.account_info,
base::BindOnce(&SyncServiceCrypto::TrustedVaultKeysFetchedFromClient,
weak_factory_.GetWeakPtr(), is_second_fetch_attempt));
}
void SyncServiceCrypto::TrustedVaultKeysFetchedFromClient(
bool is_second_fetch_attempt,
const std::vector<std::vector<uint8_t>>& keys) {
if (state_.required_user_action !=
RequiredUserAction::kFetchingTrustedVaultKeys &&
state_.required_user_action !=
RequiredUserAction::kTrustedVaultKeyRequiredButFetching) {
return;
}
DCHECK(state_.engine);
base::UmaHistogramCounts100("Sync.TrustedVaultFetchedKeysCount", keys.size());
if (keys.empty()) {
// Nothing to do if no keys have been fetched from the client (e.g. user
// action is required for fetching additional keys). Let's avoid unnecessary
// steps like marking keys as stale.
FetchTrustedVaultKeysCompletedButInsufficient();
return;
}
state_.engine->AddTrustedVaultDecryptionKeys(
keys,
base::BindOnce(&SyncServiceCrypto::TrustedVaultKeysAdded,
weak_factory_.GetWeakPtr(), is_second_fetch_attempt));
}
void SyncServiceCrypto::TrustedVaultKeysAdded(bool is_second_fetch_attempt) {
// Having kFetchingTrustedVaultKeys or kTrustedVaultKeyRequiredButFetching
// indicates OnTrustedVaultKeyAccepted() was not triggered, so the fetched
// trusted vault keys were insufficient.
bool success = state_.required_user_action !=
RequiredUserAction::kFetchingTrustedVaultKeys &&
state_.required_user_action !=
RequiredUserAction::kTrustedVaultKeyRequiredButFetching;
base::UmaHistogramBoolean("Sync.TrustedVaultAddKeysAttemptIsSuccessful",
success);
if (success) {
return;
}
// Let trusted vault client know, that fetched keys were insufficient.
trusted_vault_client_->MarkLocalKeysAsStale(
state_.account_info,
base::BindOnce(&SyncServiceCrypto::TrustedVaultKeysMarkedAsStale,
weak_factory_.GetWeakPtr(), is_second_fetch_attempt));
}
void SyncServiceCrypto::TrustedVaultKeysMarkedAsStale(
bool is_second_fetch_attempt,
bool result) {
if (state_.required_user_action !=
RequiredUserAction::kFetchingTrustedVaultKeys &&
state_.required_user_action !=
RequiredUserAction::kTrustedVaultKeyRequiredButFetching) {
return;
}
// If nothing has changed (determined by `!result` since false negatives are
// disallowed by the API) or this is already a second attempt, the fetching
// procedure can be considered completed.
if (!result || is_second_fetch_attempt) {
FetchTrustedVaultKeysCompletedButInsufficient();
return;
}
FetchTrustedVaultKeys(/*is_second_fetch_attempt=*/true);
}
void SyncServiceCrypto::FetchTrustedVaultKeysCompletedButInsufficient() {
DCHECK(state_.required_user_action ==
RequiredUserAction::kFetchingTrustedVaultKeys ||
state_.required_user_action ==
RequiredUserAction::kTrustedVaultKeyRequiredButFetching);
// If FetchKeys() was intended to be called during an already existing ongoing
// FetchKeys(), it needs to be invoked now that it's possible.
if (state_.deferred_trusted_vault_fetch_keys_pending) {
FetchTrustedVaultKeys(/*is_second_fetch_attempt=*/false);
return;
}
// Reaching this codepath indicates OnTrustedVaultKeyAccepted() was not
// triggered, so the fetched trusted vault keys were insufficient.
UpdateRequiredUserActionAndNotify(
RequiredUserAction::kTrustedVaultKeyRequired);
// Reconfigure without the encrypted types (excluded implicitly via the failed
// datatypes handler).
delegate_->ReconfigureDataTypesDueToCrypto();
}
void SyncServiceCrypto::UpdateRequiredUserActionAndNotify(
RequiredUserAction new_required_user_action) {
DCHECK_NE(new_required_user_action,
RequiredUserAction::kUnknownDuringInitialization);
if (state_.required_user_action == new_required_user_action) {
return;
}
state_.required_user_action = new_required_user_action;
delegate_->CryptoRequiredUserActionChanged();
}
void SyncServiceCrypto::RefreshIsRecoverabilityDegraded() {
DCHECK(state_.engine);
if (GetPassphraseType() != PassphraseType::kTrustedVaultPassphrase) {
return;
}
switch (state_.required_user_action) {
case RequiredUserAction::kUnknownDuringInitialization:
case RequiredUserAction::kFetchingTrustedVaultKeys:
case RequiredUserAction::kTrustedVaultKeyRequired:
case RequiredUserAction::kTrustedVaultKeyRequiredButFetching:
case RequiredUserAction::kPassphraseRequired:
return;
case RequiredUserAction::kNone:
case RequiredUserAction::kTrustedVaultRecoverabilityDegraded:
break;
}
trusted_vault_client_->GetIsRecoverabilityDegraded(
state_.account_info,
base::BindOnce(&SyncServiceCrypto::GetIsRecoverabilityDegradedCompleted,
weak_factory_.GetWeakPtr()));
}
void SyncServiceCrypto::GetIsRecoverabilityDegradedCompleted(
bool is_recoverability_degraded) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// `engine` could have been reset.
if (!state_.engine) {
DCHECK_EQ(state_.required_user_action,
RequiredUserAction::kUnknownDuringInitialization);
return;
}
// The passphrase type could have changed.
if (GetPassphraseType() != PassphraseType::kTrustedVaultPassphrase) {
DCHECK_NE(state_.required_user_action,
RequiredUserAction::kTrustedVaultRecoverabilityDegraded);
return;
}
// Transition from non-degraded to degraded recoverability.
if (is_recoverability_degraded &&
state_.required_user_action == RequiredUserAction::kNone) {
UpdateRequiredUserActionAndNotify(
RequiredUserAction::kTrustedVaultRecoverabilityDegraded);
delegate_->CryptoStateChanged();
}
// Transition from degraded to non-degraded recoverability.
if (!is_recoverability_degraded &&
state_.required_user_action ==
RequiredUserAction::kTrustedVaultRecoverabilityDegraded) {
UpdateRequiredUserActionAndNotify(RequiredUserAction::kNone);
delegate_->CryptoStateChanged();
}
if (!initial_trusted_vault_recoverability_logged_to_uma_) {
DCHECK(state_.engine);
initial_trusted_vault_recoverability_logged_to_uma_ = true;
RecordTrustedVaultHistogramBooleanWithMigrationSuffix(
"Sync.TrustedVaultRecoverabilityDegradedOnStartup",
is_recoverability_degraded, state_.engine->GetDetailedStatus());
}
}
bool SyncServiceCrypto::SetDecryptionKeyWithoutUpdatingBootstrapToken(
std::unique_ptr<Nigori> nigori) {
DCHECK(nigori);
// This should only be called when we have cached pending keys.
DCHECK(state_.cached_pending_keys.has_blob());
// Check the passphrase that was provided against our local cache of the
// cryptographer's pending keys (which we cached during a previous
// OnPassphraseRequired() event). If this was unsuccessful, the UI layer can
// immediately call OnPassphraseRequired() again without showing the user a
// spinner.
if (!CheckNigoriAgainstPendingKeys(*nigori, state_.cached_pending_keys)) {
return false;
}
state_.engine->SetExplicitPassphraseDecryptionKey(std::move(nigori));
// Since we were able to decrypt the cached pending keys with the passphrase
// provided, we immediately alert the UI layer that the passphrase was
// accepted. This will avoid the situation where a user enters a passphrase,
// clicks OK, immediately reopens the advanced settings dialog, and gets an
// unnecessary prompt for a passphrase.
// Note: It is not guaranteed that the passphrase will be accepted by the
// syncer thread, since we could receive a new nigori node while the task is
// pending. This scenario is a valid race, and
// SetExplicitPassphraseDecryptionKey() can trigger a new
// OnPassphraseRequired() if it needs to.
OnPassphraseAccepted();
return true;
}
void SyncServiceCrypto::MaybeSetDecryptionKeyFromBootstrapToken() {
if (!state_.engine) {
// Engine initialization isn't complete yet, attempt decryption upon
// initialization.
return;
}
std::unique_ptr<Nigori> nigori =
ReadNigoriFromBootstrapToken(delegate_->GetEncryptionBootstrapToken());
if (!nigori) {
return;
}
SetDecryptionKeyWithoutUpdatingBootstrapToken(std::move(nigori));
}
} // namespace syncer
|