File: cpu_probe_linux.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (142 lines) | stat: -rw-r--r-- 4,503 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/system_cpu/cpu_probe_linux.h"

#include <stdint.h>

#include <utility>
#include <vector>

#include "base/check_op.h"
#include "base/functional/callback.h"
#include "base/memory/ptr_util.h"
#include "base/memory/scoped_refptr.h"
#include "base/sequence_checker.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "components/system_cpu/core_times.h"
#include "components/system_cpu/cpu_sample.h"
#include "components/system_cpu/procfs_stat_cpu_parser.h"

namespace system_cpu {

// Helper class that performs the actual I/O. It must run on a
// SequencedTaskRunner that is properly configured for blocking I/O
// operations.
class CpuProbeLinux::BlockingTaskRunnerHelper final {
 public:
  explicit BlockingTaskRunnerHelper(base::FilePath procfs_stat_path);
  ~BlockingTaskRunnerHelper();

  BlockingTaskRunnerHelper(const BlockingTaskRunnerHelper&) = delete;
  BlockingTaskRunnerHelper& operator=(const BlockingTaskRunnerHelper&) = delete;

  std::optional<CpuSample> Update();

 private:
  // Called when a core is seen the first time in /proc/stat.
  //
  // For most systems, the cores listed in /proc/stat are static. However, it
  // is theoretically possible for cores to go online and offline.
  void InitializeCore(size_t, const CoreTimes&);

  SEQUENCE_CHECKER(sequence_checker_);

  // /proc/stat parser. Used to derive CPU utilization.
  ProcfsStatCpuParser stat_parser_ GUARDED_BY_CONTEXT(sequence_checker_);

  // Most recent per-core times from /proc/stat.
  std::vector<CoreTimes> last_per_core_times_
      GUARDED_BY_CONTEXT(sequence_checker_);
};

CpuProbeLinux::BlockingTaskRunnerHelper::BlockingTaskRunnerHelper(
    base::FilePath procfs_stat_path)
    : stat_parser_(std::move(procfs_stat_path)) {}

CpuProbeLinux::BlockingTaskRunnerHelper::~BlockingTaskRunnerHelper() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
}

std::optional<CpuSample> CpuProbeLinux::BlockingTaskRunnerHelper::Update() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);

  if (!stat_parser_.Update()) {
    return std::nullopt;
  }

  const std::vector<CoreTimes>& per_core_times = stat_parser_.core_times();

  double utilization_sum = 0.0;
  int utilization_cores = 0;
  for (size_t i = 0; i < per_core_times.size(); ++i) {
    CHECK_GE(last_per_core_times_.size(), i);

    const CoreTimes& core_times = per_core_times[i];

    if (last_per_core_times_.size() == i) {
      InitializeCore(i, core_times);
      continue;
    }

    double core_utilization =
        core_times.TimeUtilization(last_per_core_times_[i]);
    if (core_utilization >= 0) {
      // Only overwrite `last_per_core_times_` if the /proc/stat counters are
      // monotonically increasing. Otherwise, discard the measurement.
      last_per_core_times_[i] = core_times;

      utilization_sum += core_utilization;
      ++utilization_cores;
    }
  }

  if (utilization_cores > 0) {
    return CpuSample{.cpu_utilization = utilization_sum / utilization_cores};
  } else {
    return std::nullopt;
  }
}

void CpuProbeLinux::BlockingTaskRunnerHelper::InitializeCore(
    size_t core_index,
    const CoreTimes& initial_core_times) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  CHECK_EQ(last_per_core_times_.size(), core_index);

  last_per_core_times_.push_back(initial_core_times);
}

// static
std::unique_ptr<CpuProbeLinux> CpuProbeLinux::Create() {
  return base::WrapUnique(
      new CpuProbeLinux(base::FilePath(ProcfsStatCpuParser::kProcfsStatPath)));
}

CpuProbeLinux::CpuProbeLinux(base::FilePath procfs_stat_path) {
  helper_ = base::SequenceBound<BlockingTaskRunnerHelper>(
      base::ThreadPool::CreateSequencedTaskRunner(
          {base::MayBlock(), base::TaskPriority::BEST_EFFORT,
           base::TaskShutdownBehavior::SKIP_ON_SHUTDOWN}),
      std::move(procfs_stat_path));
}

CpuProbeLinux::~CpuProbeLinux() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
}

void CpuProbeLinux::Update(SampleCallback callback) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  helper_.AsyncCall(&BlockingTaskRunnerHelper::Update)
      .Then(std::move(callback));
}

base::WeakPtr<CpuProbe> CpuProbeLinux::GetWeakPtr() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  return weak_factory_.GetWeakPtr();
}

}  // namespace system_cpu