File: uniformity_unittest.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (473 lines) | stat: -rw-r--r-- 20,224 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <stdint.h>

#include <initializer_list>
#include <map>
#include <memory>
#include <optional>

#include "base/feature_list.h"
#include "base/functional/bind.h"
#include "base/strings/stringprintf.h"
#include "base/test/scoped_feature_list.h"
#include "components/variations/entropy_provider.h"
#include "components/variations/proto/study.pb.h"
#include "components/variations/proto/variations_seed.pb.h"
#include "components/variations/variations_layers.h"
#include "components/variations/variations_seed_processor.h"
#include "components/variations/variations_test_utils.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace variations {
namespace {

// For these tests, we use a small LES range to make the expectations simpler.
const uint32_t kMaxEntropy = 20;
const uint32_t kLayerId = 1;
const uint32_t kLayerSalt = kLayerId;
const char kStudyName[] = "Uniformity";

struct LayerStudySeedOptions {
  bool layer_constrain_study = true;
  // If empty, the seed will NOT contain a layer. Otherwise, the seed will
  // contain a layer of the given entropy mode.
  std::optional<Layer::EntropyMode> layer_entropy_mode = Layer::LOW;
  bool add_google_web_experiment_id = false;
  uint32_t salt = kLayerSalt;
  uint32_t slot_multiplier = 1;
};

// Generates a seed for checking uniformity of assignments in layered
// constrained study. This seed contains a 3 arm study active in 9/10 slots.
// |slot_multiplier| increased the number of slots in each range, but should not
// affect randomization.
VariationsSeed LayerStudySeed(const LayerStudySeedOptions& options) {
  VariationsSeed seed;
  Layer* layer = seed.add_layers();
  layer->set_id(kLayerId);
  layer->set_salt(options.salt);
  layer->set_num_slots(10 * options.slot_multiplier);
  if (options.layer_entropy_mode) {
    layer->set_entropy_mode(options.layer_entropy_mode.value());
  }
  Layer::LayerMember* member = layer->add_members();
  member->set_id(82);
  // Use a 9/10 slots, but with the slots into a 4 and 5 slot chunk that are
  // discontiguous. Neither range alone will allow uniform randomization if
  // 3 does not divide the range of the LES values.
  Layer::LayerMember::SlotRange* slot = member->add_slots();
  slot->set_start(0 * options.slot_multiplier);
  slot->set_end(4 * options.slot_multiplier);
  slot = member->add_slots();
  slot->set_start(6 * options.slot_multiplier);
  slot->set_end(9 * options.slot_multiplier);

  Study* study = seed.add_study();
  study->set_name(kStudyName);
  study->set_consistency(Study_Consistency_PERMANENT);

  if (options.layer_constrain_study) {
    LayerMemberReference* layer_membership = study->mutable_layer();
    layer_membership->set_layer_id(kLayerId);
    layer_membership->add_layer_member_ids(82);
  }
  // Use 3 arms, which does not divide
  for (auto* group_name : {"A", "B", "C"}) {
    auto* exp = study->add_experiment();
    exp->set_name(group_name);
    exp->set_probability_weight(1);
  }
  if (options.add_google_web_experiment_id) {
    study->mutable_experiment(0)->set_google_web_experiment_id(12345);
  }
  return seed;
}

// A vector of 20 empty strings representing 20 clients each with an empty
// assignment.
const std::vector<std::string> kNoAssignments(20, "");

// When assigned directly from low entropy, the following assignments are used
// for the study.
const std::vector<std::string> kExpectedLowEntropyAssignments = {
    "C", "A", "B", "C", "A", "B", "C", "A", "B", "B",  // 10
    "B", "A", "C", "C", "C", "A", "B", "B", "A", "A",  // 20
};

// LayeredStudySeed should give the following assignment using the test LES.
// All 3 arms get 6/20 values, with 2/20 not in the study.
const std::vector<std::string> kExpectedRemainderEntropyAssignments = {
    "A", "",  "B", "B", "C", "A", "B", "B", "C", "C",  // 10
    "C", "A", "",  "A", "C", "A", "C", "B", "A", "B",  // 20
};

// The assignment results using the limited entropy provider. The setup in
// LayerStudySeed() implies 10% of the client will not have an active layer
// member, and thus will not receive an assignment. In the simulation, 1/20
// comes out to be empty (the one at index 11), which is a likely event (p=0.27)
// given the setup.
const std::vector<std::string> kExpectedLimitedEntropyAssignments = {
    "B", "C", "B", "B", "B", "C", "C", "A", "A", "C",  // 10
    "B", "",  "A", "A", "C", "A", "B", "A", "C", "A",  // 20
};

// The expected group assignments for the study based on high entropy.
// This does not take into account any layer exclusions.
// This is only a small sample of the entropy space, so we don't expect
// precised uniformity, just a reasonable mixture.
const std::vector<std::string> kExpectedHighEntropyStudyAssignments = {
    "C", "B", "A", "B", "A", "B", "A", "A", "B", "C",  // 10
    "B", "A", "A", "C", "C", "A", "A", "B", "B", "C",  // 20
    "C", "A", "C", "A", "C", "A", "B", "B", "A", "B",  // 30
    "A", "B", "C", "B", "B", "C", "C", "C", "B", "B",  // 40
    "C", "B", "B", "C", "C", "B", "A", "B", "C", "C",  // 50
    "C", "B", "C", "C", "B", "B", "C", "B", "A", "A",  // 60
    "B", "C", "A", "C", "A", "B", "B", "C", "B", "A",  // 70
    "B", "B", "A", "B", "A", "C", "B", "A", "B", "B",  // 80
    "B", "A", "B", "C", "C", "B", "A", "A", "C", "A",  // 90
    "A", "A", "C", "B", "B", "C", "B", "C", "A", "C",  // 100
};

// Process the seed and return which group the user is assigned for Uniformity.
// From the setup in LayerStudySeed(), the group (i.e., the return value) can be
// either "A", "B", "C", or an empty string when the study is not assigned.
std::string GetUniformityAssignment(const VariationsSeed& seed,
                                    const EntropyProviders& entropy_providers) {
  base::test::ScopedFeatureList scoped_feature_list;
  scoped_feature_list.Init();
  base::FeatureList feature_list;
  auto client_state = CreateDummyClientFilterableState();
  VariationsLayers layers(seed, entropy_providers);
  // This should mimic the call through SetUpFieldTrials from
  // android_webview/browser/aw_feature_list_creator.cc
  VariationsSeedProcessor().CreateTrialsFromSeed(
      seed, *client_state, base::BindRepeating(NoopUIStringOverrideCallback),
      entropy_providers, layers, &feature_list);
  testing::ClearAllVariationIDs();
  return base::FieldTrialList::FindFullName(kStudyName);
}

// Processes the seed and returns which group the user is assigned. It uses a
// total of 120 simulated clients and returns the 120 assignment results as a
// vector. See GetUniformityAssignment() for an explanation on each of the
// result. The first 20 simulated clients do not have client IDs, and each has
// a distinct low entropy value. The next 100 clients all have client IDs, and
// are uniformly assigned to one of the 20 low entropy values (i.e., 5 clients
// per value).
std::vector<std::string> GetUniformityAssignments(
    const VariationsSeed& seed,
    bool enable_benchmarking = false) {
  std::vector<std::string> result;
  // Add 20 clients that do not have client IDs, 1 per low entropy value.
  for (uint32_t i = 0; i < kMaxEntropy; i++) {
    EntropyProviders providers("", {i, kMaxEntropy},
                               "limited_entropy_randomization_source",
                               enable_benchmarking);
    result.push_back(GetUniformityAssignment(seed, providers));
  }
  // Add 100 clients that do have client IDs, 5 per low entropy value.
  for (uint32_t i = 0; i < kMaxEntropy * 5; i++) {
    auto high_entropy = base::StringPrintf("clientid_%02d", i);
    ValueInRange low_entropy = {i % kMaxEntropy, kMaxEntropy};
    EntropyProviders providers(high_entropy, low_entropy,
                               "limited_entropy_randomization_source",
                               enable_benchmarking);
    result.push_back(GetUniformityAssignment(seed, providers));
  }
  return result;
}

// Performs randomization from the given seed to 40 simulated clients and
// returns the group assignment for each client. The group assignment can be
// "A", "B", "C", or empty string if the client is not assigned. The first 20
// clients do not have a limited entropy randomization source. The last 20
// clients each has a different non-empty limited entropy randomization source.
std::vector<std::string> GetUniformityAssignmentsWithVaryingLimitedSource(
    const VariationsSeed& seed,
    bool enable_benchmarking = false) {
  std::vector<std::string> result;
  // Add 20 clients that do not have the limited entropy randomization source, 1
  // per low entropy value.
  for (uint32_t i = 0; i < kMaxEntropy; i++) {
    EntropyProviders providers("high_entropy_not_used", {i, kMaxEntropy},
                               /*limited_entropy_value=*/"",
                               enable_benchmarking);
    result.push_back(GetUniformityAssignment(seed, providers));
  }
  // Add 20 clients with the limited entropy randomization source, 1 per low
  // entropy value.
  for (uint32_t i = 0; i < kMaxEntropy; i++) {
    auto limited_entropy = base::StringPrintf("limited_entropy_%02d", i);
    EntropyProviders providers("high_entropy_not_used", {i, kMaxEntropy},
                               /*limited_entropy_value=*/limited_entropy,
                               enable_benchmarking);
    result.push_back(GetUniformityAssignment(seed, providers));
  }
  return result;
}

std::vector<std::string> Concat(
    std::initializer_list<const std::vector<std::string>*> vectors) {
  std::vector<std::string> result;
  for (auto* const vector : vectors) {
    result.insert(result.end(), vector->begin(), vector->end());
  }
  return result;
}

// Computes the Chi-Square statistic for |assignment_counts| assuming they
// follow a uniform distribution, where each entry has expected value
// |expected_value|.
//
// The Chi-Square statistic is defined as Sum((O-E)^2/E) where O is the observed
// value and E is the expected value.
double ComputeChiSquare(const std::map<std::string, size_t>& assignment_counts,
                        double expected_value) {
  double sum = 0;
  for (const auto& [key, value] : assignment_counts) {
    const double delta = value - expected_value;
    sum += (delta * delta) / expected_value;
  }
  return sum;
}

}  // namespace

// We should get the same assignments for clients that have no high entropy.
// This should be true for both types of layer entropy.
TEST(VariationsUniformityTest, UnlayeredDefaultEntropyStudy) {
  auto assignments = GetUniformityAssignments(
      LayerStudySeed({.layer_constrain_study = false}));

  std::vector<std::string> expected = Concat({
      // Low entropy clients assign based on low entropy.
      &kExpectedLowEntropyAssignments,
      // High entropy clients assign based on high entropy.
      // No exclusions by layer.
      &kExpectedHighEntropyStudyAssignments,
  });
  EXPECT_THAT(assignments, ::testing::ElementsAreArray(expected));
}

// We should get the same assignments for clients that have no high entropy.
// This should be true for both types of layer entropy.
TEST(VariationsUniformityTest, UnlayeredLowEntropyStudy) {
  auto assignments = GetUniformityAssignments(LayerStudySeed(
      {.layer_constrain_study = false, .add_google_web_experiment_id = true}));

  std::vector<std::string> expected = Concat({
      // Low entropy clients assign based on low entropy.
      &kExpectedLowEntropyAssignments,
      // High entropy clients assign based on low entropy.
      // No exclusions by layer.
      &kExpectedLowEntropyAssignments,
      &kExpectedLowEntropyAssignments,
      &kExpectedLowEntropyAssignments,
      &kExpectedLowEntropyAssignments,
      &kExpectedLowEntropyAssignments,
  });
  EXPECT_THAT(assignments, ::testing::ElementsAreArray(expected));
}

TEST(VariationsUniformityTest, LowEntropyLayerDefaultEntropyStudy) {
  auto assignments = GetUniformityAssignments(LayerStudySeed({}));

  std::vector<std::string> expected = Concat({
      // Low entropy clients assign based on remainder entropy.
      &kExpectedRemainderEntropyAssignments,
      // High entropy clients assign based on high entropy.
      // Exclusions by layer below.
      &kExpectedHighEntropyStudyAssignments,
  });
  // Some high entropy clients are excluded from the layer by low entropy.
  for (int i = 1; i < 6; i++) {
    for (int les_value : {1, 12}) {
      expected[i * kMaxEntropy + les_value] = "";
    }
  }

  EXPECT_THAT(assignments, ::testing::ElementsAreArray(expected));
}

TEST(VariationsUniformityTest, LowEntropyLayerLowEntropyStudy) {
  auto assignments = GetUniformityAssignments(
      LayerStudySeed({.add_google_web_experiment_id = true}));

  // Both high and low entropy clients should use remainder entropy.
  std::vector<std::string> expected = Concat({
      &kExpectedRemainderEntropyAssignments,
      &kExpectedRemainderEntropyAssignments,
      &kExpectedRemainderEntropyAssignments,
      &kExpectedRemainderEntropyAssignments,
      &kExpectedRemainderEntropyAssignments,
      &kExpectedRemainderEntropyAssignments,
  });
  EXPECT_THAT(assignments, ::testing::ElementsAreArray(expected));
}

// We should get the same assignments for clients that have no high entropy.
// This should be true for both types of layer entropy.
TEST(VariationsUniformityTest, DefaultEntropyLayerDefaultEntropyStudy) {
  auto assignments = GetUniformityAssignments(
      LayerStudySeed({.layer_entropy_mode = std::nullopt}));

  std::vector<std::string> expected = Concat({
      // Low entropy clients assign based on remainder entropy.
      &kExpectedRemainderEntropyAssignments,
      // High entropy clients assign based on high entropy.
      // Exclusions by layer below.
      &kExpectedHighEntropyStudyAssignments,
  });
  // The following clients are excluded from the layer by high entropy.
  // This is derived from a sample of the high entropy space, and 18/100
  // exclusions is a likely (p>0.01) result at 10% exclusions.
  int exclusions[] = {
      1,  6,  7,  10, 17,  // 5
      20, 25, 30, 31, 32,  // 10
      38, 40, 62, 66, 67,  // 15
      69, 71, 77           // 18
  };
  for (int exclusion : exclusions) {
    expected[kMaxEntropy + exclusion] = "";
  }

  EXPECT_THAT(assignments, ::testing::ElementsAreArray(expected));
}

TEST(VariationsUniformityTest, LimitedEntropyLayerLimitedEntropyStudy) {
  auto assignments = GetUniformityAssignmentsWithVaryingLimitedSource(
      LayerStudySeed({.layer_entropy_mode = Layer::LIMITED,
                      .add_google_web_experiment_id = true}));
  std::vector<std::string> expected = Concat({
      // Clients without the limited entropy randomization source should not be
      // assigned.
      &kNoAssignments,
      // Otherwise, the client should receive an assignment, unless the layer
      // member is not active (see doc string of
      // `kExpectedLimitedEntropyAssignments`).
      &kExpectedLimitedEntropyAssignments,
  });
  EXPECT_THAT(assignments, ::testing::ElementsAreArray(expected));
}

TEST(VariationsUniformityTest, LimitedEntropyLayerDefaultEntropyStudy) {
  auto assignments = GetUniformityAssignmentsWithVaryingLimitedSource(
      LayerStudySeed({.layer_entropy_mode = Layer::LIMITED,
                      .add_google_web_experiment_id = false}));
  // Expected assignments should be the same as the case when
  // `add_google_web_experiment_id = true` since the limited entropy provider
  // should be used whenever the study is constrained to a limited layer.
  std::vector<std::string> expected = Concat({
      &kNoAssignments,
      &kExpectedLimitedEntropyAssignments,
  });
  EXPECT_THAT(assignments, ::testing::ElementsAreArray(expected));
}

// Not specifying the `salt` field for the layer should fall back to using the
// `id` field as salt. Different salt values should result in different layer
// exclusions.
TEST(VariationsUniformityTest, LayerSalt) {
  auto assignments = GetUniformityAssignments(
      LayerStudySeed({.layer_entropy_mode = std::nullopt}));

  auto assignments_salt_not_specified = GetUniformityAssignments(
      LayerStudySeed({.layer_entropy_mode = std::nullopt, .salt = 0}));

  auto assignments_alternative_salt = GetUniformityAssignments(LayerStudySeed(
      {.layer_entropy_mode = std::nullopt, .salt = kLayerSalt + 1}));

  EXPECT_EQ(assignments, assignments_salt_not_specified);
  EXPECT_NE(assignments, assignments_alternative_salt);
}

// When enable_benchmarking is passed, layered studies should never activate.
TEST(VariationsUniformityTest, BenchmarkingDisablesLayeredStudies) {
  std::vector<std::string> expected(
      kExpectedLowEntropyAssignments.size() +
          kExpectedHighEntropyStudyAssignments.size(),
      "");
  EXPECT_THAT(GetUniformityAssignments(LayerStudySeed({}),
                                       /*enable_benchmarking=*/true),
              ::testing::ElementsAreArray(expected));
  EXPECT_THAT(GetUniformityAssignments(
                  LayerStudySeed({.add_google_web_experiment_id = true}),
                  /*enable_benchmarking=*/true),
              ::testing::ElementsAreArray(expected));
  EXPECT_THAT(GetUniformityAssignments(
                  LayerStudySeed({.layer_entropy_mode = std::nullopt}),
                  /*enable_benchmarking=*/true),
              ::testing::ElementsAreArray(expected));
}

// When enable_benchmarking is passed, layered studies should never activate.
TEST(VariationsUniformityTest,
     BenchmarkingDisablesLayeredStudies_LimitedEntropy) {
  std::vector<std::string> expected(
      kExpectedLimitedEntropyAssignments.size() + kNoAssignments.size(), "");
  EXPECT_THAT(GetUniformityAssignmentsWithVaryingLimitedSource(
                  LayerStudySeed({.layer_entropy_mode = Layer::LIMITED}),
                  /*enable_benchmarking=*/true),
              ::testing::ElementsAreArray(expected));
}

TEST(VariationsUniformityTest, SessionEntropyStudyChiSquare) {
  // Number of buckets in the simulated field trials.
  const size_t kBucketCount = 20;
  // Max number of iterations to perform before giving up and failing.
  const size_t kMaxIterationCount = 10000;
  // The number of iterations to perform before each time the statistical
  // significance of the results is checked.
  const size_t kCheckIterationCount = 1000;
  // This is the Chi-Square threshold from the Chi-Square statistic table for
  // 19 degrees of freedom (based on |kBucketCount|) with a 99.9% confidence
  // level. See: http://www.medcalc.org/manual/chi-square-table.php
  const double kChiSquareThreshold = 43.82;

  std::map<std::string, size_t> assignment_counts;

  VariationsSeed seed;
  Study* study = seed.add_study();
  study->set_name(kStudyName);
  study->set_consistency(Study_Consistency_SESSION);
  for (size_t i = 0; i < kBucketCount; i++) {
    auto* experiment = study->add_experiment();
    const std::string name =
        base::StringPrintf("group%02d", static_cast<int>(i));
    experiment->set_name(name);
    experiment->set_probability_weight(1);
    assignment_counts[name] = 0;
  }

  // The persistent entropy shouldn't matter here.
  EntropyProviders entropy_providers(
      "not_used", {0, 8000},
      /*limited_entropy_randomization_source=*/std::string_view());

  for (size_t i = 1; i <= kMaxIterationCount; i += kCheckIterationCount) {
    for (size_t j = 0; j < kCheckIterationCount; j++) {
      assignment_counts[GetUniformityAssignment(seed, entropy_providers)]++;
    }
    // Only the configured groups should have been selected.
    EXPECT_EQ(assignment_counts.size(), kBucketCount);

    const double expected_value_per_bucket =
        static_cast<double>(i) / kBucketCount;
    const double chi_square =
        ComputeChiSquare(assignment_counts, expected_value_per_bucket);
    if (chi_square < kChiSquareThreshold)
      break;

    // If |i == kMaxIterationCount|, the Chi-Square statistic did not
    // converge after |kMaxIterationCount|.
    EXPECT_LT(i, kMaxIterationCount)
        << "Failed with chi_square = " << chi_square << " after "
        << kMaxIterationCount << " iterations.";
  }
}

}  // namespace variations