1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/viz/service/display/draw_polygon.h"
#include <stddef.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <utility>
#include <vector>
#include "build/build_config.h"
#include "cc/base/math_util.h"
#include "components/viz/common/quads/draw_quad.h"
namespace {
// This threshold controls how "thick" a plane is. If a point's distance is
// <= |split_threshold|, then it is considered on the plane for the purpose of
// polygon splitting.
static const float split_threshold = 0.05f;
static const float normalized_threshold = 0.001f;
void PointInterpolate(const gfx::Point3F& from,
const gfx::Point3F& to,
double delta,
gfx::Point3F* out) {
out->SetPoint(from.x() + (to.x() - from.x()) * delta,
from.y() + (to.y() - from.y()) * delta,
from.z() + (to.z() - from.z()) * delta);
}
} // namespace
namespace viz {
DrawPolygon::DrawPolygon() = default;
DrawPolygon::DrawPolygon(const DrawQuad* original,
const std::vector<gfx::Point3F>& in_points,
const gfx::Vector3dF& normal,
int draw_order_index)
: normal_(normal),
order_index_(draw_order_index),
original_ref_(original),
is_split_(true) {
for (size_t i = 0; i < in_points.size(); i++) {
points_.push_back(in_points[i]);
}
// If life was fair, we could recalculate the normal from the given points
// and assert it was roughly the same. This causes unhelpful breaks on
// trivial slices of split polygons. Similarly, when splitting, it is
// better to keep the normal that was constructed from the original.
}
// This takes the original DrawQuad that this polygon should be based on,
// a visible content rect to make the 4 corner points from, and a transformation
// to move it and its normal into screen space.
DrawPolygon::DrawPolygon(const DrawQuad* original_ref,
const gfx::RectF& visible_layer_rect,
const gfx::Transform& transform,
int draw_order_index)
: normal_(0.0f, 0.0f, 1.0f),
order_index_(draw_order_index),
original_ref_(original_ref),
is_split_(false) {
std::array<gfx::Point3F, 6> points;
int num_vertices_in_clipped_quad;
gfx::QuadF send_quad(visible_layer_rect);
// Doing this mapping here is very important, since we can't just transform
// the points without clipping and not run into strange geometry issues when
// crossing w = 0. At this point, in the constructor, we know that we're
// working with a quad, so we can reuse the MathUtil::MapClippedQuad3d
// function instead of writing a generic polygon version of it.
cc::MathUtil::MapClippedQuad3d(transform, send_quad, points,
&num_vertices_in_clipped_quad);
for (int i = 0; i < num_vertices_in_clipped_quad; i++) {
points_.push_back(points[i]);
}
normal_ = transform.MapVector(normal_);
ConstructNormal();
}
DrawPolygon::~DrawPolygon() = default;
std::unique_ptr<DrawPolygon> DrawPolygon::CreateCopy() {
std::unique_ptr<DrawPolygon> new_polygon(new DrawPolygon());
new_polygon->order_index_ = order_index_;
new_polygon->original_ref_ = original_ref_;
new_polygon->points_.reserve(points_.size());
new_polygon->points_ = points_;
new_polygon->normal_.set_x(normal_.x());
new_polygon->normal_.set_y(normal_.y());
new_polygon->normal_.set_z(normal_.z());
return new_polygon;
}
//
// If this were to be more generally used and expected to be applicable
// replacing this with Newell's algorithm (or an improvement thereof)
// would be preferable, but usually this is coming in from a rectangle
// that has been transformed to screen space and clipped.
// Averaging a few near diagonal cross products is pretty good in that case.
//
void DrawPolygon::ConstructNormal() {
gfx::Vector3dF new_normal(0.0f, 0.0f, 0.0f);
int delta = points_.size() / 2;
for (size_t i = 1; i + delta < points_.size(); i++) {
new_normal +=
CrossProduct(points_[i] - points_[0], points_[i + delta] - points_[0]);
}
float normal_magnitude = new_normal.Length();
// Here we constrain the new normal to point in the same sense as the old one.
// This allows us to handle winding-reversing transforms better.
if (gfx::DotProduct(normal_, new_normal) < 0.0) {
normal_magnitude *= -1.0;
}
if (normal_magnitude != 0 && normal_magnitude != 1) {
new_normal.Scale(1.0f / normal_magnitude);
}
normal_ = new_normal;
}
#if BUILDFLAG(IS_WIN)
//
// Allows the unittest to invoke this for the more general constructor.
//
void DrawPolygon::RecomputeNormalForTesting() {
ConstructNormal();
}
#endif
float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const {
return gfx::DotProduct(point - points_[0], normal_);
}
// This function is separate from ApplyTransform because it is often unnecessary
// to transform the normal with the rest of the polygon.
// When drawing these polygons, it is necessary to move them back into layer
// space before sending them to OpenGL, which requires using ApplyTransform,
// but normal information is no longer needed after sorting.
void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) {
// Now we use the inverse transpose of |transform| to transform the normal.
gfx::Transform inverse_transform = transform.GetCheckedInverse();
inverse_transform.Transpose();
normal_ = inverse_transform.MapVector(normal_);
// Make sure our normal is still normalized.
float normal_magnitude = normal_.Length();
if (normal_magnitude != 0 && normal_magnitude != 1) {
normal_.InvScale(normal_magnitude);
}
}
void DrawPolygon::ApplyTransform(const gfx::Transform& transform) {
for (auto& p : points_)
p = transform.MapPoint(p);
}
// TransformToScreenSpace assumes we're moving a layer from its layer space
// into 3D screen space, which for sorting purposes requires the normal to
// be transformed along with the vertices.
void DrawPolygon::TransformToScreenSpace(const gfx::Transform& transform) {
ApplyTransform(transform);
normal_ = transform.MapVector(normal_);
ConstructNormal();
}
// In the case of TransformToLayerSpace, we assume that we are giving the
// inverse transformation back to the polygon to move it back into layer space
// but we can ignore the costly process of applying the inverse to the normal
// since we know the normal will just reset to its original state.
void DrawPolygon::TransformToLayerSpace(
const gfx::Transform& inverse_transform) {
ApplyTransform(inverse_transform);
normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f);
}
// Split |polygon| based upon |this|, leaving the results in |front| and |back|.
// If |polygon| is not split by |this|, then move it to either |front| or |back|
// depending on its orientation relative to |this|. Sets |is_coplanar| to true
// if |polygon| is actually coplanar with |this| (in which case whether it is
// front facing or back facing is determined by the dot products of normals, and
// document order).
void DrawPolygon::SplitPolygon(std::unique_ptr<DrawPolygon> polygon,
std::unique_ptr<DrawPolygon>* front,
std::unique_ptr<DrawPolygon>* back,
bool* is_coplanar) const {
DCHECK_GE(normalized_threshold, std::abs(normal_.LengthSquared() - 1.0f));
const size_t num_points = polygon->points_.size();
const auto next = [num_points](size_t i) { return (i + 1) % num_points; };
const auto prev = [num_points](size_t i) {
return (i + num_points - 1) % num_points;
};
std::vector<float> vertex_distance;
size_t pos_count = 0;
size_t neg_count = 0;
// Compute plane distances for each vertex of polygon.
vertex_distance.resize(num_points);
for (size_t i = 0; i < num_points; i++) {
vertex_distance[i] = SignedPointDistance(polygon->points_[i]);
if (vertex_distance[i] < -split_threshold) {
++neg_count;
} else if (vertex_distance[i] > split_threshold) {
++pos_count;
} else {
vertex_distance[i] = 0.0;
}
}
// Handle non-splitting cases.
if (!pos_count && !neg_count) {
if (polygon->order_index_ >= order_index_) {
*front = std::move(polygon);
} else {
*back = std::move(polygon);
}
*is_coplanar = true;
return;
}
*is_coplanar = false;
if (!neg_count) {
*front = std::move(polygon);
return;
} else if (!pos_count) {
*back = std::move(polygon);
return;
}
// Handle splitting case.
size_t front_begin;
size_t back_begin;
size_t pre_front_begin;
size_t pre_back_begin;
// Find the first vertex that is part of the front split polygon.
front_begin = std::ranges::find_if(vertex_distance,
[](float val) { return val > 0.0; }) -
vertex_distance.begin();
while (vertex_distance[pre_front_begin = prev(front_begin)] > 0.0)
front_begin = pre_front_begin;
// Find the first vertex that is part of the back split polygon.
back_begin = std::ranges::find_if(vertex_distance,
[](float val) { return val < 0.0; }) -
vertex_distance.begin();
while (vertex_distance[pre_back_begin = prev(back_begin)] < 0.0)
back_begin = pre_back_begin;
DCHECK(vertex_distance[front_begin] > 0.0);
DCHECK(vertex_distance[pre_front_begin] <= 0.0);
DCHECK(vertex_distance[back_begin] < 0.0);
DCHECK(vertex_distance[pre_back_begin] >= 0.0);
gfx::Point3F pre_pos_intersection;
gfx::Point3F pre_neg_intersection;
// Compute the intersection points. N.B.: If the "pre" vertex is on
// the thick plane, then the intersection will be at the same point, because
// we set vertex_distance to 0 in this case.
//
// Consistently use the vertex distances rather than taking dot
// products with the normal, because there may be some amount of
// accumulated floating point error in the coplanarity of the points.
// The vertex distances are what we used to separate front from back,
// so using them guarantees a nonzero denominator.
PointInterpolate(
polygon->points_[pre_front_begin], polygon->points_[front_begin],
vertex_distance[pre_front_begin] /
(vertex_distance[pre_front_begin] - vertex_distance[front_begin]),
&pre_pos_intersection);
DCHECK(std::isfinite(pre_pos_intersection.x()));
DCHECK(std::isfinite(pre_pos_intersection.y()));
DCHECK(std::isfinite(pre_pos_intersection.z()));
PointInterpolate(
polygon->points_[pre_back_begin], polygon->points_[back_begin],
vertex_distance[pre_back_begin] /
(vertex_distance[pre_back_begin] - vertex_distance[back_begin]),
&pre_neg_intersection);
DCHECK(std::isfinite(pre_neg_intersection.x()));
DCHECK(std::isfinite(pre_neg_intersection.y()));
DCHECK(std::isfinite(pre_neg_intersection.z()));
// Build the front and back polygons.
std::vector<gfx::Point3F> out_points;
out_points.push_back(pre_pos_intersection);
for (size_t index = front_begin; index != back_begin; index = next(index)) {
out_points.push_back(polygon->points_[index]);
}
if (out_points.back() != pre_neg_intersection) {
out_points.push_back(pre_neg_intersection);
}
*front =
std::make_unique<DrawPolygon>(polygon->original_ref_, out_points,
polygon->normal_, polygon->order_index_);
out_points.clear();
out_points.push_back(pre_neg_intersection);
for (size_t index = back_begin; index != front_begin; index = next(index)) {
out_points.push_back(polygon->points_[index]);
}
if (out_points.back() != pre_pos_intersection) {
out_points.push_back(pre_pos_intersection);
}
*back =
std::make_unique<DrawPolygon>(polygon->original_ref_, out_points,
polygon->normal_, polygon->order_index_);
DCHECK_GE((*front)->points().size(), 3u);
DCHECK_GE((*back)->points().size(), 3u);
}
// This algorithm takes the first vertex in the polygon and uses that as a
// pivot point to fan out and create quads from the rest of the vertices.
// |offset| starts off as the second vertex, and then |op1| and |op2| indicate
// offset+1 and offset+2 respectively.
// After the first quad is created, the first vertex in the next quad is the
// same as all the rest, the pivot point. The second vertex in the next quad is
// the old |op2|, the last vertex added to the previous quad. This continues
// until all points are exhausted.
// The special case here is where there are only 3 points remaining, in which
// case we use the same values for vertex 3 and 4 to make a degenerate quad
// that represents a triangle.
void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const {
if (points_.size() <= 2)
return;
gfx::PointF first(points_[0].x(), points_[0].y());
size_t offset = 1;
while (offset < points_.size() - 1) {
size_t op1 = offset + 1;
size_t op2 = offset + 2;
if (op2 >= points_.size()) {
// It's going to be a degenerate triangle.
op2 = op1;
}
quads->push_back(
gfx::QuadF(first, gfx::PointF(points_[offset].x(), points_[offset].y()),
gfx::PointF(points_[op1].x(), points_[op1].y()),
gfx::PointF(points_[op2].x(), points_[op2].y())));
offset = op2;
}
}
} // namespace viz
|