1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/viz/service/display/occlusion_culler.h"
#include <algorithm>
#include <cstddef>
#include <cstdlib>
#include <limits>
#include <vector>
#include "base/check.h"
#include "base/numerics/safe_conversions.h"
#include "cc/base/math_util.h"
#include "cc/base/region.h"
#include "components/viz/common/display/renderer_settings.h"
#include "components/viz/common/features.h"
#include "components/viz/common/quads/aggregated_render_pass_draw_quad.h"
#include "components/viz/common/quads/draw_quad.h"
#include "components/viz/common/quads/shared_quad_state.h"
#include "components/viz/common/quads/texture_draw_quad.h"
#include "components/viz/service/display/display_resource_provider.h"
#include "components/viz/service/display/overlay_processor_interface.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
namespace viz {
namespace {
constexpr float kEpsilon = std::numeric_limits<float>::epsilon();
base::CheckedNumeric<int> GetCheckedArea(const cc::Region& region) {
base::CheckedNumeric<int> checked_area = 0;
for (const auto rect : region) {
checked_area += rect.size().GetCheckedArea();
}
return checked_area;
}
bool Is2dAndRightAngledRotationOrPositiveScaleOrTranslation(
const gfx::Transform& transform) {
if (!transform.Is2dTransform() ||
!transform.NonDegeneratePreserves2dAxisAlignment()) {
return false;
}
// Only scale, translation, mirroring and right angled rotations (90, 180,
// 270) preserve axis alignment.
const bool has_translation = std::abs(transform.rc(0, 3)) > kEpsilon ||
std::abs(transform.rc(1, 3)) > kEpsilon;
// Inspect inner 2x2 matrix to check if the `transform` has rotation or
// positive scale.
const bool has_0_rotation_with_positive_scaling =
transform.rc(0, 0) > kEpsilon && transform.rc(1, 1) > kEpsilon;
const bool has_90_rotation_with_positive_scaling =
transform.rc(0, 1) < kEpsilon && transform.rc(1, 0) > kEpsilon;
const bool has_180_rotation_with_positive_scaling =
transform.rc(0, 0) < kEpsilon && transform.rc(1, 1) < kEpsilon;
const bool has_270_rotation_with_positive_scaling =
transform.rc(0, 1) > kEpsilon && transform.rc(1, 0) < kEpsilon;
return has_translation || has_0_rotation_with_positive_scaling ||
has_90_rotation_with_positive_scaling ||
has_180_rotation_with_positive_scaling ||
has_270_rotation_with_positive_scaling;
}
// SkRegion uses INT_MAX as a sentinel. Reduce gfx::Rect values when they are
// equal to INT_MAX to prevent conversion to an empty region.
gfx::Rect SafeConvertRectForRegion(const gfx::Rect& r) {
gfx::Rect safe_rect(r);
if (safe_rect.x() == INT_MAX) {
safe_rect.set_x(INT_MAX - 1);
}
if (safe_rect.y() == INT_MAX) {
safe_rect.set_y(INT_MAX - 1);
}
if (safe_rect.width() == INT_MAX) {
safe_rect.set_width(INT_MAX - 1);
}
if (safe_rect.height() == INT_MAX) {
safe_rect.set_height(INT_MAX - 1);
}
return safe_rect;
}
cc::Region GetOccludingRegionForRRectF(
const gfx::RRectF& bounds,
bool generate_complex_occluder_for_rounded_corners,
int minumum_quad_size_with_rounded_corners) {
gfx::RectF bounds_f = bounds.rect();
if (bounds.GetType() == gfx::RRectF::Type::kRect ||
bounds.GetType() == gfx::RRectF::Type::kEmpty) {
return gfx::ToEnclosedRect(bounds_f);
}
const auto top_left = bounds.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft);
const auto top_right =
bounds.GetCornerRadii(gfx::RRectF::Corner::kUpperRight);
const auto lower_right =
bounds.GetCornerRadii(gfx::RRectF::Corner::kLowerRight);
const auto lower_left =
bounds.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft);
static constexpr auto union_rect(
[](const gfx::RectF& rect_f, cc::Region& region) {
region.Union(gfx::ToEnclosedRect(rect_f));
});
// ___________________________________________
// + + + +
// |topLefCorner R1 |topRightCorner
// | | | |
// | | | |
// +-------+-------------------------+-------|
// | |
// | R2 |
// | |
// | |
// | |
// | |
// | |
// +----------+-------------------+----------+
// |lowerLefCorner |lowerRightCorner
// | | R3 | |
// +____--____+___________________+__________+
//
const bool uniform_top_corners =
top_left == top_right || top_left.IsZero() || top_right.IsZero();
const bool uniform_bottom_corners =
lower_left == lower_right || lower_left.IsZero() || lower_right.IsZero();
const bool should_generate_complex_occluder =
generate_complex_occluder_for_rounded_corners && uniform_top_corners &&
uniform_bottom_corners &&
bounds_f.size().GetArea() >= minumum_quad_size_with_rounded_corners;
if (should_generate_complex_occluder) {
cc::Region occluding_region;
{
// R1
float height = std::max(top_left.y(), top_right.y());
if (height > kEpsilon) {
float width = bounds_f.width() - (top_left.x() + top_right.x());
float x = bounds_f.x() + top_left.x();
float y = bounds_f.y();
union_rect({x, y, width, height}, occluding_region);
}
}
{
// R2
float height =
bounds_f.height() - (std::max(top_left.y(), top_right.y()) +
std::max(lower_left.y(), lower_right.y()));
if (height > kEpsilon) {
float width = bounds_f.width();
float x = bounds_f.x();
float y = bounds_f.y() + std::max(top_left.y(), top_right.y());
union_rect({x, y, width, height}, occluding_region);
}
}
{
// R3
float height = std::max(lower_left.y(), lower_right.y());
if (height > kEpsilon) {
float width = bounds_f.width() - (lower_left.x() + lower_right.x());
float x = bounds_f.x() + lower_left.x();
float y = bounds_f.bottom() - std::max(lower_left.y(), lower_right.y());
union_rect({x, y, width, height}, occluding_region);
}
}
return occluding_region;
}
gfx::RectF occluding_rect = bounds_f;
// Get a bounding rect that does not intersect with the rounding clip.
// When a rect has rounded corner with radius r, then the largest rect that
// can be inscribed inside it has an inset of |((2 - sqrt(2)) / 2) * radius|.
// Should you wish to convince yourself that sin(pi/4) is the max value check:
// https://math.stackexchange.com/questions/240192/find-the-area-of-largest-rectangle-that-can-be-inscribed-in-an-ellipse
constexpr float kInsetCoefficient = 0.3f;
occluding_rect.Inset(gfx::InsetsF::TLBR(
std::max(top_left.y(), top_right.y()) * kInsetCoefficient,
std::max(top_left.x(), lower_left.x()) * kInsetCoefficient,
std::max(lower_right.y(), lower_left.y()) * kInsetCoefficient,
std::max(top_right.x(), lower_right.x()) * kInsetCoefficient));
return gfx::ToEnclosedRect(occluding_rect);
}
// Attempts to consolidate rectangles that were only split because of the
// nature of base::Region and transforms the region into a list of visible
// rectangles. Returns true upon successful reduction of the region to under
// `complexity_limit`, false otherwise.
bool ReduceComplexity(const cc::Region& region,
size_t complexity_limit,
std::vector<gfx::Rect>& reduced_region_out) {
CHECK(reduced_region_out.empty());
for (gfx::Rect r : region) {
auto it = std::ranges::find_if(
reduced_region_out,
[&r](const gfx::Rect& a) { return a.SharesEdgeWith(r); });
if (it != reduced_region_out.end()) {
it->Union(r);
continue;
}
reduced_region_out.push_back(r);
if (reduced_region_out.size() >= complexity_limit) {
reduced_region_out.clear();
return false;
}
}
return true;
}
bool CanContributeToOcclusion(const SharedQuadState* shared_quad_state) {
// TODO(yiyix): For transforms that don't preserve axis-alignmement, find a
// rect interior to each transformed quad.
return shared_quad_state->opacity == 1 &&
shared_quad_state->are_contents_opaque &&
(shared_quad_state->blend_mode == SkBlendMode::kSrcOver ||
shared_quad_state->blend_mode == SkBlendMode::kSrc) &&
shared_quad_state->quad_to_target_transform
.NonDegeneratePreserves2dAxisAlignment();
}
void MaybeReduceOccluderComplexity(cc::Region& occluder,
int complexity_threshold) {
// If region complexity is above our threshold, remove the smallest
// rects from occlusion region.
while (occluder.GetRegionComplexity() > complexity_threshold) {
gfx::Rect smallest_rect = *occluder.begin();
for (auto occluding_rect : occluder) {
if (occluding_rect.size().GetCheckedArea().ValueOrDefault(INT_MAX) <
smallest_rect.size().GetCheckedArea().ValueOrDefault(INT_MAX)) {
smallest_rect = occluding_rect;
}
}
occluder.Subtract(smallest_rect);
}
}
} // namespace
OcclusionCuller::OcclusionCuller(
OverlayProcessorInterface* overlay_processor,
DisplayResourceProvider* resource_provider,
const RendererSettings::OcclusionCullerSettings& settings)
: overlay_processor_(overlay_processor),
resource_provider_(resource_provider),
settings_(settings) {}
OcclusionCuller::~OcclusionCuller() = default;
void OcclusionCuller::UpdateDeviceScaleFactor(float device_scale_factor) {
if (device_scale_factor_ == device_scale_factor) {
return;
}
device_scale_factor_ = device_scale_factor;
}
void OcclusionCuller::RemoveOverdrawQuads(AggregatedFrame* frame) {
if (frame->render_pass_list.empty()) {
return;
}
base::flat_map<AggregatedRenderPassId, gfx::Rect> backdrop_filter_rects;
for (const auto& pass : frame->render_pass_list) {
if (!pass->backdrop_filters.IsEmpty() &&
pass->backdrop_filters.HasFilterThatMovesPixels()) {
backdrop_filter_rects[pass->id] = cc::MathUtil::MapEnclosingClippedRect(
pass->transform_to_root_target, pass->output_rect);
}
}
for (const auto& pass : frame->render_pass_list) {
const SharedQuadState* last_sqs = nullptr;
cc::Region occlusion_in_target_space;
cc::Region backdrop_filters_in_target_space;
bool current_sqs_intersects_occlusion = false;
// TODO(yiyix): Add filter effects to draw occlusion calculation
if (!pass->filters.IsEmpty() || !pass->backdrop_filters.IsEmpty()) {
continue;
}
// When there is only one quad in the render pass, occlusion is not
// possible.
if (pass->quad_list.size() == 1) {
continue;
}
auto quad_list_end = pass->quad_list.end();
cc::Region occlusion_in_quad_content_space;
gfx::Rect render_pass_quads_in_content_space;
for (auto quad = pass->quad_list.begin(); quad != quad_list_end;) {
// Sanity check: we should not have a Compositor
// CompositorRenderPassDrawQuad here.
DCHECK_NE(quad->material, DrawQuad::Material::kCompositorRenderPass);
// Skip quad if it is a AggregatedRenderPassDrawQuad because it is a
// special type of DrawQuad where the visible_rect of shared quad state is
// not entirely covered by draw quads in it.
if (auto* rpdq = quad->DynamicCast<AggregatedRenderPassDrawQuad>()) {
// A RenderPass with backdrop filters may apply to a quad underlying
// RenderPassQuad. These regions should be tracked so that correctly
// handle splitting and occlusion of the underlying quad.
auto it = backdrop_filter_rects.find(rpdq->render_pass_id);
if (it != backdrop_filter_rects.end()) {
backdrop_filters_in_target_space.Union(it->second);
}
++quad;
continue;
}
// Also skip quad if the DrawQuad is inside a 3d object.
if (quad->shared_quad_state->sorting_context_id != 0) {
++quad;
continue;
}
if (!last_sqs) {
last_sqs = quad->shared_quad_state;
}
const gfx::Transform transform =
quad->shared_quad_state->quad_to_target_transform;
if (last_sqs != quad->shared_quad_state) {
if (CanContributeToOcclusion(last_sqs)) {
cc::Region sqs_region_in_target(
cc::MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
last_sqs->quad_to_target_transform,
last_sqs->visible_quad_layer_rect));
// If a rounded corner is being applied then the visible rect for the
// sqs is actually even smaller. Reduce the rect size to get a
// rounded corner adjusted occluding region.
if (last_sqs->mask_filter_info.HasRoundedCorners()) {
sqs_region_in_target.Intersect(GetOccludingRegionForRRectF(
last_sqs->mask_filter_info.rounded_corner_bounds(),
settings_.generate_complex_occluder_for_rounded_corners,
settings_.minumum_quad_size_with_rounded_corners));
}
if (last_sqs->clip_rect) {
sqs_region_in_target.Intersect(*last_sqs->clip_rect);
}
if (GetCheckedArea(sqs_region_in_target).ValueOrDefault(INT_MAX) >
settings_.occluder_minium_visible_quad_size) {
occlusion_in_target_space.Union(sqs_region_in_target);
MaybeReduceOccluderComplexity(
occlusion_in_target_space,
settings_.maximum_occluder_complexity);
}
}
// If the visible_rect of the current shared quad state does not
// intersect with the occlusion rect, we can skip draw occlusion checks
// for quads in the current SharedQuadState.
last_sqs = quad->shared_quad_state;
occlusion_in_quad_content_space.Clear();
render_pass_quads_in_content_space = gfx::Rect();
const auto current_sqs_in_target_space =
cc::MathUtil::MapEnclosingClippedRect(
transform, last_sqs->visible_quad_layer_rect);
current_sqs_intersects_occlusion =
occlusion_in_target_space.Intersects(current_sqs_in_target_space);
// Compute the occlusion region in the quad content space for 2d-scale,
// rotation(90, 180, 270) and 2d-translation transforms. Note that 0
// scale transform will fail the positive scale check.
// (See crrev.com/c/788283 for the rationale)
// Given:
// * Scale transform can be inverted by multiplying 1/scale.
// (given scale > 0)
// * Translation transform can be inverted by applying reversed
// directional translation.
// * Rotation transform can be inverted by applying rotation
// in opposite direction.
// Therefore, `transform` is always invertible.
// Note: `Transform::IsInvertible()` check is necessary to ensure no
// overflows occur when calculating the inverse. (It is inexpensive for
// 2d transforms)
if (current_sqs_intersects_occlusion &&
Is2dAndRightAngledRotationOrPositiveScaleOrTranslation(transform) &&
transform.IsInvertible()) {
const gfx::Transform reverse_transform =
transform.GetCheckedInverse();
DCHECK_LE(occlusion_in_target_space.GetRegionComplexity(),
settings_.maximum_occluder_complexity);
// Since transform can only be a scale, translation or right-angled
// matrix, it is safe to use function
// MapEnclosedRectWith2dAxisAlignedTransform to define occluded region
// in the quad content space with inverted transform.
for (gfx::Rect rect_in_target_space : occlusion_in_target_space) {
if (current_sqs_in_target_space.Intersects(rect_in_target_space)) {
const auto rect_in_content =
cc::MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
reverse_transform, rect_in_target_space);
occlusion_in_quad_content_space.Union(
SafeConvertRectForRegion(rect_in_content));
}
}
// A render pass quad may apply some filter or transform to an
// underlying quad. Do not split quads when they intersect with a
// render pass quad.
if (current_sqs_in_target_space.Intersects(
backdrop_filters_in_target_space.bounds())) {
for (auto rect_in_target_space : backdrop_filters_in_target_space) {
const auto rect_in_content =
cc::MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
reverse_transform, rect_in_target_space);
render_pass_quads_in_content_space.Union(rect_in_content);
}
}
}
}
if (!current_sqs_intersects_occlusion) {
++quad;
continue;
}
if (occlusion_in_quad_content_space.Contains(quad->visible_rect)) {
// Case 1: for simple transforms (scale or translation), define the
// occlusion region in the quad content space. If |quad| is not
// shown on the screen, then set its rect and visible_rect to be empty.
quad->visible_rect.set_size(gfx::Size());
} else if (occlusion_in_quad_content_space.Intersects(
quad->visible_rect)) {
// Case 2: for simple transforms, if the quad is partially shown on
// screen and the region formed by (occlusion region - visible_rect) is
// a rect, then update visible_rect to the resulting rect.
cc::Region visible_region = quad->visible_rect;
visible_region.Subtract(occlusion_in_quad_content_space);
quad->visible_rect = visible_region.bounds();
std::vector<gfx::Rect> reduced_visible_region;
// Split quad into multiple draw quads when area can be reduce by
// more than X fragments.
const bool should_split_quads =
!overlay_processor_->DisableSplittingQuads() &&
!visible_region.Intersects(render_pass_quads_in_content_space) &&
ReduceComplexity(visible_region, settings_.quad_split_limit,
reduced_visible_region) &&
CanSplitDrawQuad(*quad, visible_region.bounds().size(),
reduced_visible_region);
if (should_split_quads) {
auto new_quad = pass->quad_list.InsertCopyBeforeDrawQuad(
quad, reduced_visible_region.size() - 1);
for (const auto& visible_rect : reduced_visible_region) {
new_quad->visible_rect = visible_rect;
++new_quad;
}
quad = new_quad;
continue;
}
} else if (occlusion_in_quad_content_space.IsEmpty() &&
occlusion_in_target_space.Contains(
cc::MathUtil::MapEnclosingClippedRect(
transform, quad->visible_rect))) {
// Case 3: for non simple transforms, define the occlusion region in
// target space. If |quad| is not shown on the screen, then set its
// rect and visible_rect to be empty.
quad->visible_rect.set_size(gfx::Size());
}
++quad;
}
}
}
bool OcclusionCuller::CanSplitDrawQuad(
const DrawQuad* quad,
const gfx::Size& visible_region_bounding_size,
const std::vector<gfx::Rect>& visible_region_rects) {
if (quad->material == DrawQuad::Material::kDebugBorder ||
quad->material == DrawQuad::Material::kVideoHole) {
return false;
}
if (quad->material == DrawQuad::Material::kTextureContent) {
// Exclude possible overlay candidates from quad splitting. See
// `OverlayCandidateFactory::FromDrawQuad()`.
if (resource_provider_->IsOverlayCandidate(quad->resource_id)) {
return false;
}
}
base::CheckedNumeric<int> area = 0;
for (const auto& r : visible_region_rects) {
area += r.size().GetCheckedArea();
// In calculations below, assume false if this addition overflows.
if (!area.IsValid()) {
return false;
}
}
base::CheckedNumeric<int> visible_region_bounding_area =
visible_region_bounding_size.GetCheckedArea();
if (!visible_region_bounding_area.IsValid()) {
// In calculations below, assume true if this overflows.
return true;
}
area = visible_region_bounding_area - area;
if (!area.IsValid()) {
// In calculations below, assume false if this subtraction underflows.
return false;
}
const int int_area = area.ValueOrDie();
return int_area * device_scale_factor_ * device_scale_factor_ >
settings_.minimum_fragments_reduced;
}
} // namespace viz
|