1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "components/viz/service/display/overlay_processor_using_strategy.h"
#include <algorithm>
#include <iterator>
#include <memory>
#include <optional>
#include <set>
#include <utility>
#include <vector>
#include "base/check.h"
#include "base/containers/flat_set.h"
#include "base/containers/span.h"
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/metrics/histogram_macros.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/time/time.h"
#include "base/timer/elapsed_timer.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "components/viz/common/display/overlay_strategy.h"
#include "components/viz/common/features.h"
#include "components/viz/common/quads/aggregated_render_pass.h"
#include "components/viz/common/quads/quad_list.h"
#include "components/viz/common/quads/solid_color_draw_quad.h"
#include "components/viz/common/quads/texture_draw_quad.h"
#include "components/viz/service/debugger/viz_debugger.h"
#include "components/viz/service/display/display_resource_provider.h"
#include "components/viz/service/display/output_surface.h"
#include "components/viz/service/display/overlay_candidate.h"
#include "components/viz/service/display/overlay_combination_cache.h"
#include "components/viz/service/display/overlay_proposed_candidate.h"
#include "components/viz/service/display/overlay_strategy_single_on_top.h"
#include "components/viz/service/display/overlay_strategy_underlay.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/transform.h"
namespace viz {
namespace {
// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused.
// Used by UMA histogram that tells us if we're attempting multiple overlays,
// or why we aren't.
enum class AttemptingMultipleOverlays {
kYes = 0,
kNoFeatureDisabled = 1,
kNoRequiredOverlay = 2,
kNoUnsupportedStrategy = 3,
kMaxValue = kNoUnsupportedStrategy,
};
// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused.
// Used by UMA histogram that tells us if we are promoting mask candidates or
// why we aren't.
enum class PromotingMaskCandidates {
kYes = 0,
kNoNotRequired = 1,
kNoMultipleOverlaysDisabled = 2,
kNoDrmRejected = 3,
kMaxValue = kNoDrmRejected
};
constexpr char kShouldAttemptMultipleOverlaysHistogramName[] =
"Compositing.Display.OverlayProcessorUsingStrategy."
"ShouldAttemptMultipleOverlays";
constexpr char kNumOverlaysPromotedHistogramName[] =
"Compositing.Display.OverlayProcessorUsingStrategy.NumOverlaysPromoted";
constexpr char kNumOverlaysAttemptedHistogramName[] =
"Compositing.Display.OverlayProcessorUsingStrategy.NumOverlaysAttempted";
constexpr char kNumOverlaysFailedHistogramName[] =
"Compositing.Display.OverlayProcessorUsingStrategy.NumOverlaysFailed";
constexpr char kWorkingScaleFactorHistogramName[] =
"Compositing.Display.OverlayProcessorUsingStrategy."
"WorkingScaleFactorForRequiredOverlays";
constexpr char kFramesAttemptingRequiredOverlaysHistogramName[] =
"Compositing.Display.OverlayProcessorUsingStrategy."
"FramesAttemptingRequiredOverlays";
constexpr char kFramesScalingRequiredOverlaysHistogramName[] =
"Compositing.Display.OverlayProcessorUsingStrategy."
"FramesScalingRequiredOverlays";
constexpr char kFramesWithMaskCandidatesRequireOverlaysHistogramName[] =
"Compositing.Display.OverlayProcessorUsingStrategy."
"FramesWithMaskCandidatesRequireOverlays";
constexpr char kFramesWithMaskCandidatesHistogramName[] =
"Compositing.Display.OverlayProcessorUsingStrategy."
"FramesWithMaskCandidates";
constexpr char kShouldPromoteCandidatesWithMasksHistogramName[] =
"Compositing.Display.OverlayProcessorUsingStrategy."
"ShouldPromoteCandidatesWithMasks";
using OverlayProposedCandidateIndex =
std::vector<OverlayProposedCandidate>::size_type;
using ConstOverlayProposedCandidateIterator =
std::vector<OverlayProposedCandidate>::const_iterator;
static void LogShouldPromoteCandidatesWithMasksEnumUMA(
PromotingMaskCandidates attempt) {
UMA_HISTOGRAM_ENUMERATION(kShouldPromoteCandidatesWithMasksHistogramName,
attempt);
}
static void LogFramesWithMaskCandidatesBoolUMA(
const std::vector<OverlayProposedCandidate>& proposed_candidates) {
const bool have_mask_candidates =
std::any_of(proposed_candidates.cbegin(), proposed_candidates.cend(),
[](const OverlayProposedCandidate& candidate) {
return candidate.candidate.has_rounded_display_masks;
});
UMA_HISTOGRAM_BOOLEAN(kFramesWithMaskCandidatesHistogramName,
have_mask_candidates);
}
// Appends candidates with display masks at the end of `test_candidates` if they
// occlude any candidate in `test_candidates`. These candidates are in the list
// between `rounded_corner_candidates_begin` and rounded_corner_candidates_end`.
//
// Returns the iterator to start of candidates with display mask in
// `test_candidates`. If no candidates were added, it returns
// `test_candidates.cend()`.
ConstOverlayProposedCandidateIterator MaybeAppendOccludingMaskCandidates(
ConstOverlayProposedCandidateIterator candidates_wth_masks_begin,
ConstOverlayProposedCandidateIterator candidates_wth_masks_end,
std::vector<OverlayProposedCandidate>& test_candidates) {
// Keep track of the starting index of mask candidates in test_candidates`
// list.
OverlayProposedCandidateIndex begin_mask_candidates_index =
test_candidates.size();
bool appended_mask_candidates = false;
for (auto& it = candidates_wth_masks_begin; it < candidates_wth_masks_end;
it++) {
auto mask_key = OverlayProposedCandidate::ToProposeKey(*it);
for (OverlayProposedCandidateIndex i = 0; i < begin_mask_candidates_index;
i++) {
const auto& keys = test_candidates[i].occluding_mask_keys;
// Append candidates with masks if they occludes any other overlay
// candidate in `test_candidates`.
if (keys.contains(mask_key)) {
test_candidates.push_back(*it);
appended_mask_candidates = true;
} else {
LogShouldPromoteCandidatesWithMasksEnumUMA(
PromotingMaskCandidates::kNoNotRequired);
}
}
}
UMA_HISTOGRAM_BOOLEAN(kFramesWithMaskCandidatesRequireOverlaysHistogramName,
appended_mask_candidates);
return test_candidates.cbegin() + begin_mask_candidates_index;
}
// Returns true if `candidate` is occluded by any candidate with rounded-display
// masks in `mask_candidates`.
bool IsOccludedByMaskCandidates(
const OverlayProposedCandidate& candidate,
const std::vector<OverlayProposedCandidate*>& mask_candidates) {
if (candidate.occluding_mask_keys.empty()) {
return false;
}
return std::ranges::any_of(
mask_candidates.begin(), mask_candidates.end(),
[&candidate](const auto& iter) {
return candidate.occluding_mask_keys.contains(
OverlayProposedCandidate::ToProposeKey(*iter));
});
}
// Output of `ProcessOverlayTestResults()`.
struct OverlayTestResults {
// True if any successfully test candidates is an underlays.
bool underlay_used = false;
// True if any test candidate was marked to be composited for UI correctness.
bool candidates_marked_for_compositing = false;
};
// Processes the `candidates` list by checking which overlay candidates can be
// handled by DRM and based on that decide which candidates should be promoted
// or composited to produce the most correct UI. Adjusts the `test_candidates`
// lists accordingly by marking `overlay_handled`.
OverlayTestResults ProcessOverlayTestResults(
std::vector<OverlayProposedCandidate>& test_candidates) {
std::vector<OverlayProposedCandidate*> failed_candidates_with_masks;
OverlayTestResults data;
for (auto& it : test_candidates) {
if (it.candidate.has_rounded_display_masks) {
if (!it.candidate.overlay_handled) {
failed_candidates_with_masks.push_back(&it);
}
LogShouldPromoteCandidatesWithMasksEnumUMA(
it.candidate.overlay_handled
? PromotingMaskCandidates::kYes
: PromotingMaskCandidates::kNoDrmRejected);
}
if (it.candidate.overlay_handled && it.candidate.plane_z_order < 0) {
data.underlay_used = true;
}
}
bool has_promoting_overlays_without_masks = false;
// If some of the candidates with rounded-display masks fail to promote,
// composite other overlay(SingleOnTop) candidates that are occluded by these
// failed candidates with masks.
for (auto& it : test_candidates) {
if (it.strategy->GetUMAEnum() == OverlayStrategy::kSingleOnTop &&
!it.candidate.has_rounded_display_masks &&
it.candidate.overlay_handled) {
if (IsOccludedByMaskCandidates(it, failed_candidates_with_masks)) {
it.candidate.overlay_handled = false;
data.candidates_marked_for_compositing = true;
} else {
has_promoting_overlays_without_masks = true;
}
}
}
// If the only overlay(SingleOnTop) candidates that can be promoted are
// candidates with display masks, we can skip promoting them to overlays
// to save power.
if (!has_promoting_overlays_without_masks) {
for (auto& it : test_candidates) {
if (it.strategy->GetUMAEnum() == OverlayStrategy::kSingleOnTop) {
it.candidate.overlay_handled = false;
data.candidates_marked_for_compositing = true;
}
}
}
return data;
}
// Gets the minimum scaling amount used by either dimension for the src relative
// to the dst.
float GetMinScaleFactor(const OverlayCandidate& candidate) {
if (candidate.resource_size_in_pixels.IsEmpty() ||
candidate.uv_rect.IsEmpty()) {
return 1.0f;
}
return std::min(candidate.display_rect.width() /
(candidate.uv_rect.width() *
candidate.resource_size_in_pixels.width()),
candidate.display_rect.height() /
(candidate.uv_rect.height() *
candidate.resource_size_in_pixels.height()));
}
// Modifies an OverlayCandidate so that the |org_src_rect| (which should
// correspond to the src rect before any modifications were made) is scaled by
// |scale_factor| and then clipped and aligned on integral subsampling
// boundaries. This is used for dealing with required overlays and scaling
// limitations.
void ScaleCandidateSrcRect(const gfx::RectF& org_src_rect,
float scale_factor,
OverlayCandidate* candidate) {
gfx::RectF src_rect(org_src_rect);
src_rect.set_width(org_src_rect.width() / scale_factor);
src_rect.set_height(org_src_rect.height() / scale_factor);
// Make it an integral multiple of the subsampling factor.
constexpr int kSubsamplingFactor = 2;
src_rect.set_x(kSubsamplingFactor *
(std::lround(src_rect.x()) / kSubsamplingFactor));
src_rect.set_y(kSubsamplingFactor *
(std::lround(src_rect.y()) / kSubsamplingFactor));
src_rect.set_width(kSubsamplingFactor *
(std::lround(src_rect.width()) / kSubsamplingFactor));
src_rect.set_height(kSubsamplingFactor *
(std::lround(src_rect.height()) / kSubsamplingFactor));
// Scale it back into UV space and set it in the candidate.
candidate->uv_rect = gfx::ScaleRect(
src_rect, 1.0f / candidate->resource_size_in_pixels.width(),
1.0f / candidate->resource_size_in_pixels.height());
}
void SyncOverlayCandidates(
std::vector<OverlayProposedCandidate>& proposed_candidates,
std::vector<OverlayCandidate>& candidates,
bool copy_from_proposed_candidates) {
auto cand_it = candidates.begin();
auto proposed_it = proposed_candidates.begin();
while (cand_it != candidates.end()) {
if (copy_from_proposed_candidates) {
cand_it->overlay_handled = proposed_it->candidate.overlay_handled;
} else {
proposed_it->candidate.overlay_handled = cand_it->overlay_handled;
}
cand_it++;
proposed_it++;
}
}
} // namespace
static void LogStrategyEnumUMA(OverlayStrategy strategy) {
UMA_HISTOGRAM_ENUMERATION("Viz.DisplayCompositor.OverlayStrategy", strategy);
}
static void LogFramesAttemptingRequiredCandidateBoolUMA(
const std::vector<OverlayProposedCandidate>& proposed_candidates) {
const bool have_required_overlay_candidates =
std::any_of(proposed_candidates.cbegin(), proposed_candidates.cend(),
[](const OverlayProposedCandidate& candidate) {
return candidate.candidate.requires_overlay;
});
UMA_HISTOGRAM_BOOLEAN(kFramesAttemptingRequiredOverlaysHistogramName,
have_required_overlay_candidates);
}
static void LogWorkingScaleFactorCountUMA(float scale_factor) {
UMA_HISTOGRAM_CUSTOM_COUNTS(kWorkingScaleFactorHistogramName,
scale_factor * 100, /*minimum=*/1,
/*maximum=*/201, /*bucket_count=*/50);
}
static void LogFramesScalingRequiredCandidateBoolUMA(bool attempted_scaling) {
UMA_HISTOGRAM_BOOLEAN(kFramesScalingRequiredOverlaysHistogramName,
attempted_scaling);
}
OverlayProcessorUsingStrategy::OverlayProcessorUsingStrategy()
: max_overlays_config_(features::MaxOverlaysConsidered()) {}
OverlayProcessorUsingStrategy::~OverlayProcessorUsingStrategy() = default;
gfx::Rect OverlayProcessorUsingStrategy::GetAndResetOverlayDamage() {
gfx::Rect result = overlay_damage_rect_;
overlay_damage_rect_ = gfx::Rect();
return result;
}
void OverlayProcessorUsingStrategy::NotifyOverlayPromotion(
DisplayResourceProvider* display_resource_provider,
const CandidateList& candidates,
const QuadList& quad_list) {}
void OverlayProcessorUsingStrategy::SetFrameSequenceNumber(
uint64_t frame_sequence_number) {
frame_sequence_number_ = frame_sequence_number;
}
DBG_FLAG_FBOOL("processor.overlay.disable", disable_overlay)
void OverlayProcessorUsingStrategy::ProcessForOverlays(
DisplayResourceProvider* resource_provider,
AggregatedRenderPassList* render_passes,
const SkM44& output_color_matrix,
const OverlayProcessorInterface::FilterOperationsMap& render_pass_filters,
const OverlayProcessorInterface::FilterOperationsMap&
render_pass_backdrop_filters,
SurfaceDamageRectList surface_damage_rect_list,
OutputSurfaceOverlayPlane* output_surface_plane,
CandidateList* candidates,
gfx::Rect* damage_rect,
std::vector<gfx::Rect>* content_bounds) {
#if BUILDFLAG(IS_CHROMEOS)
// TODO(b/181974042): Remove when color space is plumbed.
if (output_surface_plane)
primary_plane_color_space_ = output_surface_plane->color_space;
#endif
TRACE_EVENT0("viz", "OverlayProcessorUsingStrategy::ProcessForOverlays");
DCHECK(candidates->empty());
auto* render_pass = render_passes->back().get();
bool success = false;
UMA_HISTOGRAM_COUNTS_1000(
"Compositing.Display.OverlayProcessorUsingStrategy.NumQuadsConsidered",
render_pass->quad_list.size());
DBG_DRAW_RECT("overlay.incoming.damage", (*damage_rect));
for (auto&& each : surface_damage_rect_list) {
DBG_DRAW_RECT("overlay.surface.damage", each);
}
// If we have any copy requests, we can't remove any quads for overlays or
// CALayers because the framebuffer would be missing the removed quads'
// contents.
bool skip_because_copy_request = BlockForCopyRequests(render_pass);
if (!skip_because_copy_request && !disable_overlay()) {
success = AttemptWithStrategies(
output_color_matrix, render_pass_filters, render_pass_backdrop_filters,
resource_provider, render_passes, &surface_damage_rect_list,
output_surface_plane, candidates, content_bounds, damage_rect);
}
DCHECK(candidates->empty() || success);
UMA_HISTOGRAM_COUNTS_100(kNumOverlaysPromotedHistogramName,
candidates->size());
UpdateOverlayStatusMap(*candidates);
UpdateDamageRect(surface_damage_rect_list, *damage_rect);
NotifyOverlayPromotion(resource_provider, *candidates,
render_pass->quad_list);
for (auto& selected_candidate : *candidates) {
DBG_DRAW_RECT("overlay.selected.rect", selected_candidate.display_rect);
}
DBG_DRAW_RECT("overlay.outgoing.damage", (*damage_rect));
TRACE_COUNTER1(TRACE_DISABLED_BY_DEFAULT("viz.debug.overlay_planes"),
"Scheduled overlay planes", candidates->size());
}
void OverlayProcessorUsingStrategy::CheckOverlaySupport(
const OverlayProcessorInterface::OutputSurfaceOverlayPlane* primary_plane,
OverlayCandidateList* candidate_list) {
#if BUILDFLAG(IS_CHROMEOS)
// TODO(b/181974042): Remove when color space is plumbed.
if (primary_plane)
primary_plane_color_space_ = primary_plane->color_space;
#endif
CheckOverlaySupportImpl(primary_plane, candidate_list);
}
void OverlayProcessorUsingStrategy::ClearOverlayCombinationCache() {
overlay_combination_cache_.ClearCache();
}
// This local function simply recomputes the root damage from
// |surface_damage_rect_list| while excluding the damage contribution from a
// specific overlay.
// TODO(petermcneeley): Eventually this code should be commonized in the same
// location as the definition of |SurfaceDamageRectList|
gfx::Rect OverlayProcessorUsingStrategy::ComputeDamageExcludingOverlays(
const SurfaceDamageRectList& surface_damage_rect_list,
const gfx::Rect& existing_damage) {
if (curr_overlays_.empty()) {
return existing_damage;
}
if (curr_overlays_.size() == 1) {
auto& status = curr_overlays_.begin()->second;
if (status.damage_index == OverlayCandidate::kInvalidDamageIndex) {
// An opaque overlay that is on top will hide any damage underneath.
// TODO(petermcneeley): This is a special case optimization which could be
// removed if we had more reliable damage.
if (status.is_opaque && !status.is_underlay) {
return gfx::SubtractRects(existing_damage, status.overlay_rect);
}
return existing_damage;
}
}
// Create a list of iterators to all `curr_overlays_` entries, sorted by
// damage index, so we can encounter them in order as we loop through
// `surface_damage_rect_list`.
std::vector<OverlayStatusMap::const_iterator> overlay_status_iters;
overlay_status_iters.reserve(curr_overlays_.size());
for (auto it = curr_overlays_.begin(); it != curr_overlays_.end(); ++it) {
overlay_status_iters.push_back(it);
}
std::sort(overlay_status_iters.begin(), overlay_status_iters.end(),
[](const auto& it1, const auto& it2) {
return it1->second.damage_index < it2->second.damage_index;
});
gfx::Rect computed_damage_rect;
auto overlay_status_it = overlay_status_iters.begin();
std::vector<gfx::Rect> occluding_rects;
for (size_t i = 0; i < surface_damage_rect_list.size(); i++) {
size_t curr_overlay_damage_index =
overlay_status_it != overlay_status_iters.end()
? (*overlay_status_it)->second.damage_index
: OverlayCandidate::kInvalidDamageIndex;
if (curr_overlay_damage_index == i) {
const OverlayStatus& status = (*overlay_status_it)->second;
// |surface_damage_rect_list| is ordered such that from here on this
// |overlay_rect| will act as an occluder for damage after.
if (status.is_opaque) {
occluding_rects.push_back(status.overlay_rect);
}
overlay_status_it++;
} else {
gfx::Rect curr_surface_damage = surface_damage_rect_list[i];
// The |surface_damage_rect_list| can include damage rects coming from
// outside and partially outside the original |existing_damage| area. This
// is due to the conditional inclusion of these damage rects based on
// target damage in surface aggregator. So by restricting this damage to
// the |existing_damage| we avoid unnecessary final damage output.
// https://crbug.com/1197609
curr_surface_damage.Intersect(existing_damage);
// Only add damage back in if it is not occluded by any overlays.
bool is_occluded = std::ranges::any_of(
occluding_rects, [&curr_surface_damage](const gfx::Rect& occluder) {
return occluder.Contains(curr_surface_damage);
});
if (!is_occluded) {
computed_damage_rect.Union(curr_surface_damage);
}
}
}
return computed_damage_rect;
}
OverlayProcessorUsingStrategy::OverlayStatus::OverlayStatus(
const OverlayCandidate& candidate,
const gfx::Rect& key,
const OverlayStatusMap& prev_overlays) {
overlay_rect = ToEnclosedRect(candidate.display_rect);
damage_rect = candidate.damage_rect;
damage_index = candidate.overlay_damage_index;
damage_area_estimate = candidate.damage_area_estimate;
has_mask_filter = candidate.has_mask_filter;
plane_z_order = candidate.plane_z_order;
is_underlay = candidate.plane_z_order < 0;
is_opaque = candidate.is_opaque;
auto prev_it = prev_overlays.find(key);
if (prev_it != prev_overlays.end()) {
is_new = false;
prev_was_opaque = prev_it->second.is_opaque;
prev_was_underlay = prev_it->second.is_underlay;
prev_has_mask_filter = prev_it->second.has_mask_filter;
} else {
is_new = true;
prev_was_opaque = true;
prev_was_underlay = false;
prev_has_mask_filter = false;
}
}
OverlayProcessorUsingStrategy::OverlayStatus::OverlayStatus(
const OverlayStatus&) = default;
OverlayProcessorUsingStrategy::OverlayStatus&
OverlayProcessorUsingStrategy::OverlayStatus::operator=(const OverlayStatus&) =
default;
OverlayProcessorUsingStrategy::OverlayStatus::~OverlayStatus() = default;
void OverlayProcessorUsingStrategy::UpdateOverlayStatusMap(
const OverlayCandidateList& candidates) {
// Move `curr_overlays_` into `prev_overlays_`
prev_overlays_.clear();
curr_overlays_.swap(prev_overlays_);
for (auto& candidate : candidates) {
gfx::Rect key = GetOverlayDamageRectForOutputSurface(candidate);
curr_overlays_.emplace(key, OverlayStatus(candidate, key, prev_overlays_));
}
}
// Exclude overlay damage from the root damage when possible. In the steady
// state the overlay damage is always removed but transitions can require us to
// apply damage for the entire display size of the overlay. Underlays need to
// provide transition damage on both promotion and demotion as in both cases
// they need to change the primary plane (underlays need a primary plane black
// transparent quad). Overlays only need to produce transition damage on
// demotion as they do not use the primary plane during promoted phase.
void OverlayProcessorUsingStrategy::UpdateDamageRect(
const SurfaceDamageRectList& surface_damage_rect_list,
gfx::Rect& damage_rect) {
DCHECK_LE(curr_overlays_.size(),
static_cast<size_t>(max_overlays_considered_));
// Remove all damage caused by these overlays, and any damage they occlude.
damage_rect =
ComputeDamageExcludingOverlays(surface_damage_rect_list, damage_rect);
previous_frame_overlay_rect_ = gfx::Rect();
for (auto& [key, status] : curr_overlays_) {
if (!status.is_underlay) {
overlay_damage_rect_.Union(status.overlay_rect);
}
previous_frame_overlay_rect_.Union(status.overlay_rect);
// Our current overlays need to damage the primary plane in these cases:
// - A previous overlay became an Underlay this frame
// - An overlay became transparent this frame
// - An newly promoted underlay or transparent overlay
// - An overlay that added/removed a mask filter this frame
//
// Rationale:
// - Related bugs: https://crbug.com/875879 https://crbug.com/1107460
// - We need to make sure that when we transition to an underlay, we damage
// the region where the underlay will be positioned. This is because a
// black transparent hole is made for the underlay to show through,
// but its possible that the damage for this quad is less than the
// complete size of the underlay. https://crbug.com/1130733
// - The primary plane may be visible underneath transparent overlays, so
// we need to damage it to remove any trace this quad left behind.
// https://buganizer.corp.google.com/issues/192294199
if ((!status.prev_was_underlay && status.is_underlay) ||
(status.prev_was_opaque && !status.is_opaque) ||
(status.is_new && (status.is_underlay || !status.is_opaque)) ||
(status.has_mask_filter != status.prev_has_mask_filter)) {
damage_rect.Union(status.overlay_rect);
}
}
// Damage is required for any overlays from the last frame that got demoted
// this frame.
for (auto& [key, status] : prev_overlays_) {
// Overlays present last frame that are absent this frame have been demoted.
if (curr_overlays_.find(key) == curr_overlays_.end()) {
damage_rect.Union(status.overlay_rect);
}
}
// Record each on top and underlay candidate.
for (auto it : curr_overlays_) {
const auto& status = it.second;
if (status.plane_z_order != 0) {
RecordOverlayDamageRectHistograms(status.plane_z_order > 0,
status.damage_area_estimate != 0.f,
damage_rect.IsEmpty());
}
}
}
void OverlayProcessorUsingStrategy::AdjustOutputSurfaceOverlay(
std::optional<OutputSurfaceOverlayPlane>* output_surface_plane) {
if (!output_surface_plane || !output_surface_plane->has_value())
return;
// If the overlay candidates cover the entire screen, the
// |output_surface_plane| could be removed.
if (last_successful_strategy_ &&
last_successful_strategy_->RemoveOutputSurfaceAsOverlay())
output_surface_plane->reset();
}
void OverlayProcessorUsingStrategy::SortProposedOverlayCandidates(
std::vector<OverlayProposedCandidate>* proposed_candidates) {
// Removes trackers for candidates that are no longer being rendered.
for (auto it = tracked_candidates_.begin();
it != tracked_candidates_.end();) {
if (it->second.IsAbsent()) {
it = tracked_candidates_.erase(it);
} else {
++it;
}
}
// This loop fills in data for the heuristic sort and thresholds candidates.
for (auto it = proposed_candidates->begin();
it != proposed_candidates->end();) {
auto key = OverlayProposedCandidate::ToProposeKey(*it);
// If no tracking exists we create a new one here.
auto [map_iter, inserted] =
tracked_candidates_.try_emplace(key, tracker_config_);
auto& track_data = map_iter->second;
DBG_DRAW_TEXT_OPT("candidate.surface.id", DBG_OPT_GREEN,
it->candidate.display_rect.origin(),
base::StringPrintf("%X , %d", key.tracking_id,
static_cast<int>(key.strategy_id))
.c_str());
DBG_DRAW_TEXT_OPT("candidate.mean.damage", DBG_OPT_GREEN,
it->candidate.display_rect.origin(),
base::StringPrintf(
" %f, %f %d", track_data.MeanFrameRatioRate(),
track_data.GetDamageRatioRate(),
static_cast<int>(it->candidate.resource_id.value())));
const auto display_area = it->candidate.display_rect.size().GetArea();
// The |force_update| case is where we have damage and a damage index but
// there are no changes in the |resource_id|. This is only known to occur
// for low latency surfaces (inking like in the google keeps application).
const bool force_update = it->candidate.overlay_damage_index !=
OverlayCandidate::kInvalidDamageIndex &&
it->candidate.damage_area_estimate != 0.f;
track_data.AddRecord(frame_sequence_number_,
it->candidate.damage_area_estimate / display_area,
it->candidate.resource_id, force_update);
// Here a series of criteria are considered for wholesale rejection of a
// candidate. The rational for rejection is usually power improvements but
// this can indirectly reallocate limited overlay resources to another
// candidate.
int power_gained = track_data.GetModeledPowerGain(
frame_sequence_number_, display_area,
it->strategy->GetUMAEnum() == OverlayStrategy::kFullscreen);
bool passes_min_threshold =
((track_data.IsActivelyChanging(frame_sequence_number_) ||
!prioritization_config_.changing_threshold) &&
(power_gained >= 0 || !prioritization_config_.damage_rate_threshold));
// Candidates that have rounded-display mask textures must be promoted
// even though they do not pass the minimum threshold.
// These candidates do not have active damage. (rounded-displays do not have
// changing corner radii with each frame!) But given the requirement that
// these mask textures must be on top of for UI, we need to promote these
// textures for correctness.
if (it->candidate.requires_overlay ||
it->candidate.has_rounded_display_masks || passes_min_threshold) {
it->relative_power_gain = power_gained;
++it;
} else {
// We erase this candidate from |proposed_candidates| in this frame rather
// than delete the |track_data| because this candidate will still be
// present next frame.
it = proposed_candidates->erase(it);
}
}
// Heuristic sorting:
// The stable sort of proposed candidates will not change the prioritized
// order of candidates that have equal sort. What this means is that in a
// situation where there are multiple candidates with identical rects we will
// output a sort that respects the original strategies order. An example of
// this would be the single_on_top strategy coming before the underlay
// strategy for a overlay candidate that has zero occlusion. This sort
// function must provide weak ordering.
auto prio_config = prioritization_config_;
std::stable_sort(
proposed_candidates->begin(), proposed_candidates->end(),
[prio_config](const auto& a, const auto& b) {
// These following two comparisons are for correctness over performance
// reasons.
// - Candidates that are marked as `required_overlay` need be an HW
// overlay to function.
// - Candidates that have rounded_display masks need to be in overlay as
// they must be drawn on top of rest of UI.
// If both require a HW overlay we leave them in order so the topmost
// one gets the overlay.
if (a.candidate.requires_overlay || b.candidate.requires_overlay) {
return a.candidate.requires_overlay && !b.candidate.requires_overlay;
}
// Candidate that require_overlays get more priority over the candidates
// that have textures for the rounded_display masks.
if (a.candidate.has_rounded_display_masks ||
b.candidate.has_rounded_display_masks) {
return a.candidate.has_rounded_display_masks &&
!b.candidate.has_rounded_display_masks;
}
// if candidates use low latency rendering, we will ignore their
// relative power gain and place them before normal candidates.
if (a.candidate.low_latency_rendering ||
b.candidate.low_latency_rendering) {
return a.candidate.low_latency_rendering &&
!b.candidate.low_latency_rendering;
}
// Opaque Power Metric:
// |relative_power_gain| is computed in the tracker for each overlay
// candidate and being proportional to power saved is directly
// comparable.
if (prio_config.power_gain_sort) {
if (a.relative_power_gain != b.relative_power_gain) {
return a.relative_power_gain > b.relative_power_gain;
}
}
return false;
});
}
bool OverlayProcessorUsingStrategy::AttemptWithStrategies(
const SkM44& output_color_matrix,
const OverlayProcessorInterface::FilterOperationsMap& render_pass_filters,
const OverlayProcessorInterface::FilterOperationsMap&
render_pass_backdrop_filters,
const DisplayResourceProvider* resource_provider,
AggregatedRenderPassList* render_pass_list,
SurfaceDamageRectList* surface_damage_rect_list,
OverlayProcessorInterface::OutputSurfaceOverlayPlane* primary_plane,
OverlayCandidateList* candidates,
std::vector<gfx::Rect>* content_bounds,
gfx::Rect* incoming_damage) {
last_successful_strategy_ = nullptr;
std::vector<OverlayProposedCandidate> proposed_candidates;
for (const auto& strategy : strategies_) {
strategy->Propose(output_color_matrix, render_pass_filters,
render_pass_backdrop_filters, resource_provider,
render_pass_list, surface_damage_rect_list, primary_plane,
&proposed_candidates, content_bounds);
}
size_t num_proposed_pre_sort = proposed_candidates.size();
UMA_HISTOGRAM_COUNTS_1000(
"Viz.DisplayCompositor.OverlayNumProposedCandidates",
num_proposed_pre_sort);
LogFramesWithMaskCandidatesBoolUMA(proposed_candidates);
SortProposedOverlayCandidates(&proposed_candidates);
if (proposed_candidates.size() == 0) {
LogStrategyEnumUMA(num_proposed_pre_sort != 0
? OverlayStrategy::kNoStrategyFailMin
: OverlayStrategy::kNoStrategyUsed);
}
LogFramesAttemptingRequiredCandidateBoolUMA(proposed_candidates);
if (ShouldAttemptMultipleOverlays(proposed_candidates)) {
auto* render_pass = render_pass_list->back().get();
return AttemptMultipleOverlays(proposed_candidates, primary_plane,
render_pass, *candidates);
}
std::for_each(candidates->cbegin(), candidates->cend(),
[](const OverlayCandidate& candidate) {
if (candidate.has_rounded_display_masks) {
LogShouldPromoteCandidatesWithMasksEnumUMA(
PromotingMaskCandidates::kNoMultipleOverlaysDisabled);
}
});
bool has_required_overlay = false;
bool attempted_scaling_required_overlays = false;
for (auto&& candidate : proposed_candidates) {
if (candidate.candidate.requires_overlay) {
has_required_overlay = true;
}
bool used_overlay = candidate.strategy->Attempt(
output_color_matrix, render_pass_filters, render_pass_backdrop_filters,
resource_provider, render_pass_list, surface_damage_rect_list,
primary_plane, candidates, content_bounds, candidate);
if (!used_overlay && candidate.candidate.requires_overlay) {
// Check if we likely failed due to scaling capabilities, and if so, try
// to adjust things to make it work. We do this by tracking what scale
// factors succeed for downscaling, and then if we hit a failure case we
// decrease the amount iteratively until it succeeds. We then cache that
// information as hints to speed up the process next time around.
// When we scale less, we then clip instead in order to fit into the
// target area. This is more visually appealing than blacking out the
// quad since an overlay is required.
float scale_factor = GetMinScaleFactor(candidate.candidate);
if (scale_factor < 1.0f) {
// When we are trying to determine the min allowed downscale, this is
// the amount we will adjust the factor by for each iteration we
// attempt.
constexpr float kScaleAdjust = 0.05f;
gfx::RectF org_src_rect =
gfx::ScaleRect(candidate.candidate.uv_rect,
candidate.candidate.resource_size_in_pixels);
for (float new_scale_factor = std::min(
min_working_scale_,
std::max(max_failed_scale_, scale_factor) + kScaleAdjust);
new_scale_factor < 1.0f; new_scale_factor += kScaleAdjust) {
float zoom_scale = new_scale_factor / scale_factor;
ScaleCandidateSrcRect(org_src_rect, zoom_scale, &candidate.candidate);
attempted_scaling_required_overlays = true;
if (candidate.strategy->Attempt(
output_color_matrix, render_pass_filters,
render_pass_backdrop_filters, resource_provider,
render_pass_list, surface_damage_rect_list, primary_plane,
candidates, content_bounds, candidate)) {
used_overlay = true;
break;
} else {
UpdateDownscalingCapabilities(new_scale_factor, /*success=*/false);
}
}
}
}
if (used_overlay) {
// This function is used by underlay strategy to mark the primary plane as
// enable_blending.
candidate.strategy->AdjustOutputSurfaceOverlay(primary_plane);
LogStrategyEnumUMA(candidate.strategy->GetUMAEnum());
last_successful_strategy_ = candidate.strategy;
OnOverlaySwitchUMA(OverlayProposedCandidate::ToProposeKey(candidate));
if (candidate.candidate.requires_overlay) {
// Track how much we can downscale successfully.
float scale_factor = GetMinScaleFactor(candidate.candidate);
if (scale_factor < 1.0f) {
UpdateDownscalingCapabilities(scale_factor, /*success=*/true);
}
LogWorkingScaleFactorCountUMA(scale_factor);
LogFramesScalingRequiredCandidateBoolUMA(
attempted_scaling_required_overlays);
}
RegisterOverlayRequirement(has_required_overlay);
return true;
}
}
if (has_required_overlay) {
LogFramesScalingRequiredCandidateBoolUMA(
attempted_scaling_required_overlays);
}
RegisterOverlayRequirement(has_required_overlay);
if (proposed_candidates.size() != 0) {
LogStrategyEnumUMA(OverlayStrategy::kNoStrategyAllFail);
}
OnOverlaySwitchUMA(ProposedCandidateKey());
return false;
}
bool OverlayProcessorUsingStrategy::ShouldAttemptMultipleOverlays(
const std::vector<OverlayProposedCandidate>& sorted_candidates) {
if (max_overlays_config_ <= 1) {
UMA_HISTOGRAM_ENUMERATION(kShouldAttemptMultipleOverlaysHistogramName,
AttemptingMultipleOverlays::kNoFeatureDisabled);
return false;
}
for (auto& proposed : sorted_candidates) {
// When candidates that require overlays fail, they get retried with
// different scale factors. This becomes complicated when using multiple
// overlays at once so we won't attempt multiple in that case.
if (proposed.candidate.requires_overlay) {
UMA_HISTOGRAM_ENUMERATION(kShouldAttemptMultipleOverlaysHistogramName,
AttemptingMultipleOverlays::kNoRequiredOverlay);
return false;
}
// Using multiple overlays only makes sense with SingleOnTop and Underlay
// strategies.
OverlayStrategy type = proposed.strategy->GetUMAEnum();
if (type != OverlayStrategy::kSingleOnTop &&
type != OverlayStrategy::kUnderlay) {
UMA_HISTOGRAM_ENUMERATION(
kShouldAttemptMultipleOverlaysHistogramName,
AttemptingMultipleOverlays::kNoUnsupportedStrategy);
return false;
}
}
UMA_HISTOGRAM_ENUMERATION(kShouldAttemptMultipleOverlaysHistogramName,
AttemptingMultipleOverlays::kYes);
return true;
}
bool OverlayProcessorUsingStrategy::AttemptMultipleOverlays(
const std::vector<OverlayProposedCandidate>& sorted_candidates,
OverlayProcessorInterface::OutputSurfaceOverlayPlane* primary_plane,
AggregatedRenderPass* render_pass,
OverlayCandidateList& candidates) {
if (sorted_candidates.empty()) {
UMA_HISTOGRAM_COUNTS_100(kNumOverlaysAttemptedHistogramName, 0);
UMA_HISTOGRAM_COUNTS_100(kNumOverlaysFailedHistogramName, 0);
return false;
}
// After sorting in `SortProposedOverlayCandidates()`, all the candidates with
// display masks will be in the beginning of `sorted_candidates`.
ConstOverlayProposedCandidateIterator first_candidate_without_masks =
std::ranges::find_if(
sorted_candidates.begin(), sorted_candidates.end(),
[](const OverlayProposedCandidate& candidate) {
return !candidate.candidate.has_rounded_display_masks;
});
int candidates_with_masks_count =
std::distance(sorted_candidates.begin(), first_candidate_without_masks);
int candidates_without_masks_count =
sorted_candidates.size() - candidates_with_masks_count;
// If `sorted_candidates` only contains candidates with masks, we can skip
// promoting them to overlays.
if (candidates_without_masks_count == 0) {
for (auto iter = sorted_candidates.begin();
iter != first_candidate_without_masks; iter++) {
LogShouldPromoteCandidatesWithMasksEnumUMA(
PromotingMaskCandidates::kNoNotRequired);
}
UMA_HISTOGRAM_COUNTS_100(kNumOverlaysAttemptedHistogramName, 0);
UMA_HISTOGRAM_COUNTS_100(kNumOverlaysFailedHistogramName, 0);
return false;
}
// Request a combination to test without candidates with display masks. We
// request a combination that is `candidates_with_masks_count` less so
// that we can safely(have enough planes to test combination) add candidates
// with masks to the test combination.
int max_overlays_without_mask_candidates =
std::max(0, max_overlays_considered_ - candidates_with_masks_count);
OverlayCombinationToTest result =
overlay_combination_cache_.GetOverlayCombinationToTest(
base::span(first_candidate_without_masks, sorted_candidates.end()),
max_overlays_without_mask_candidates);
std::vector<OverlayProposedCandidate> test_candidates =
result.candidates_to_test;
ConstOverlayProposedCandidateIterator begin_rounded_corner_candidate =
MaybeAppendOccludingMaskCandidates(sorted_candidates.begin(),
first_candidate_without_masks,
test_candidates);
bool testing_underlay = false;
// We'll keep track of the underlays that we're testing so we can assign their
// `plane_z_order`s based on their order in the QuadList.
std::vector<std::vector<OverlayProposedCandidate>::iterator> underlay_iters;
for (auto it = test_candidates.begin(); it != test_candidates.end(); ++it) {
switch (it->strategy->GetUMAEnum()) {
case OverlayStrategy::kSingleOnTop:
// SingleOnTop candidates without masks do not overlap with each other,
// so the ordering does not matter and they have plane_z_order=1,
// letting DRM decide how it wants to arrange these candidates.
// Whereas SingleOnTop candidates with masks can overlap with other
// SingleOnTop candidates and since they are drawn on top on other
// SingleOnTop candidates, without overlapping each other, they have
// plane_z_order=2.
it->candidate.plane_z_order =
it->candidate.has_rounded_display_masks ? 2 : 1;
break;
case OverlayStrategy::kUnderlay:
testing_underlay = true;
underlay_iters.push_back(it);
break;
default:
// Unsupported strategy type.
NOTREACHED();
}
}
// We don't sort the actual items in `test_candidates` here in order to
// maintain the power-gain sorted order.
AssignUnderlayZOrders(underlay_iters);
candidates.reserve(test_candidates.size());
for (auto& proposed_candidate : test_candidates) {
candidates.push_back(proposed_candidate.candidate);
}
if (!testing_underlay || !primary_plane) {
CheckOverlaySupport(primary_plane, &candidates);
} else {
OverlayProcessorStrategy::PrimaryPlane new_plane_candidate(*primary_plane);
new_plane_candidate.enable_blending = true;
// Check for support.
CheckOverlaySupport(&new_plane_candidate, &candidates);
}
const int num_overlays_attempted = candidates.size();
// Update the test candidates so we can process the result, use EraseIf below
// and tell the OverlayCombinationCache which ones succeeded/failed.
SyncOverlayCandidates(test_candidates, candidates,
/*copy_from_proposed_candidates=*/false);
// Decide which test_candidates to commit that will results in correct UI
// based on result of testing the combination.
OverlayTestResults output = ProcessOverlayTestResults(test_candidates);
// Only declare test candidates that do not have candidates with rounded
// display masks.
overlay_combination_cache_.DeclarePromotedCandidates(
base::span(test_candidates.begin(), begin_rounded_corner_candidate));
// Update `candidates` if it was decided to composite some test_candidates in
// `ProcessOverlayTestResults()`.
if (output.candidates_marked_for_compositing) {
SyncOverlayCandidates(test_candidates, candidates,
/*copy_from_proposed_candidates=*/true);
}
// Remove failed candidates.
std::erase_if(candidates, [](auto& cand) { return !cand.overlay_handled; });
std::erase_if(test_candidates, [](auto& proposed) -> bool {
return !proposed.candidate.overlay_handled;
});
const int num_overlays_promoted = candidates.size();
UMA_HISTOGRAM_COUNTS_100(kNumOverlaysAttemptedHistogramName,
num_overlays_attempted);
UMA_HISTOGRAM_COUNTS_100(kNumOverlaysFailedHistogramName,
num_overlays_attempted - num_overlays_promoted);
if (candidates.empty()) {
LogStrategyEnumUMA(OverlayStrategy::kNoStrategyAllFail);
return false;
}
if (output.underlay_used && primary_plane) {
// Using underlays means the primary plane needs blending enabled.
primary_plane->enable_blending = true;
}
// Sort test candidates in reverse order so we can commit them from back to
// front. This makes sure none of the quad iterators are invalidated when some
// are removed from the QuadList as they're committed.
//
// TODO(khaslett): Remove this hacky workaround. Instead of erasing quads we
// could probably replace them with solid colour quads or make them invisible
// instead.
std::sort(test_candidates.begin(), test_candidates.end(),
[](const OverlayProposedCandidate& c1,
const OverlayProposedCandidate& c2) -> bool {
return c1.quad_iter.index() > c2.quad_iter.index();
});
// Commit successful candidates.
for (auto& test_candidate : test_candidates) {
test_candidate.strategy->CommitCandidate(test_candidate, render_pass);
LogStrategyEnumUMA(test_candidate.strategy->GetUMAEnum());
}
return true;
}
void OverlayProcessorUsingStrategy::AssignUnderlayZOrders(
std::vector<std::vector<OverlayProposedCandidate>::iterator>&
underlay_iters) {
// Sort the underlay iterators by DrawQuad order, frontmost first.
std::sort(
underlay_iters.begin(), underlay_iters.end(),
[](const std::vector<OverlayProposedCandidate>::iterator& c1,
const std::vector<OverlayProposedCandidate>::iterator& c2) -> bool {
return c1->quad_iter.index() < c2->quad_iter.index();
});
// Assign underlay candidate plane_z_orders based on DrawQuad order.
int underlay_z_order = -1;
for (auto& it : underlay_iters) {
it->candidate.plane_z_order = underlay_z_order--;
}
}
gfx::Rect OverlayProcessorUsingStrategy::GetOverlayDamageRectForOutputSurface(
const OverlayCandidate& overlay) const {
return ToEnclosedRect(overlay.display_rect);
}
void OverlayProcessorUsingStrategy::OnOverlaySwitchUMA(
ProposedCandidateKey overlay_tracking_id) {
auto curr_tick = base::TimeTicks::Now();
if (!(prev_overlay_tracking_id_ == overlay_tracking_id)) {
prev_overlay_tracking_id_ = overlay_tracking_id;
UMA_HISTOGRAM_TIMES("Viz.DisplayCompositor.OverlaySwitchInterval",
curr_tick - last_time_interval_switch_overlay_tick_);
last_time_interval_switch_overlay_tick_ = curr_tick;
}
}
void OverlayProcessorUsingStrategy::UpdateDownscalingCapabilities(
float scale_factor,
bool success) {
if (success) {
// Adjust the working bound up by this amount so we don't end up with
// floating point errors based on the true minimum that actually
// works.
constexpr float kScaleBoundsTolerance = 0.001f;
min_working_scale_ =
std::min(scale_factor + kScaleBoundsTolerance, min_working_scale_);
// If something worked that failed before, reset the known maximum for
// failure.
if (min_working_scale_ < max_failed_scale_)
max_failed_scale_ = 0.0f;
return;
}
max_failed_scale_ = std::max(max_failed_scale_, scale_factor);
// If something failed that worked before, reset the known working
// minimum.
if (max_failed_scale_ > min_working_scale_)
min_working_scale_ = 1.0f;
// This is the worst case scale factor we should ever run into. In reality
// it's actually more like 0.68, but I'm making it larger to be safe and we
// also always add 0.05 to this value when we make use of it so we are
// effectively bounding it at 0.75. We can end up getting incorrect signals
// about scaling capabilities when displays power off and overlay promotion
// doesn't work, so for that reason so we can't assume all failures are
// legitimate.
constexpr float kMaxFailedScaleMin = 0.70f;
max_failed_scale_ = std::min(max_failed_scale_, kMaxFailedScaleMin);
}
bool OverlayProcessorUsingStrategy::BlockForCopyRequests(
const AggregatedRenderPass* root_render_pass) {
if (!base::FeatureList::IsEnabled(
features::kTemporalSkipOverlaysWithRootCopyOutputRequests)) {
return !root_render_pass->copy_requests.empty();
}
bool has_copy = false;
if (!root_render_pass->copy_requests.empty()) {
has_copy = true;
}
if (has_copy) {
copy_request_counter_ = kCopyRequestSkipOverlayFrames;
} else {
copy_request_counter_ = std::max(0, copy_request_counter_ - 1);
}
return copy_request_counter_ > 0;
}
} // namespace viz
|