1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/viz/service/display/surface_aggregator.h"
#include <stddef.h>
#include <algorithm>
#include <map>
#include <utility>
#include <vector>
#include "base/check_op.h"
#include "base/containers/adapters.h"
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/ranges.h"
#include "base/strings/to_string.h"
#include "base/task/common/task_annotator.h"
#include "base/timer/elapsed_timer.h"
#include "base/trace_event/trace_event.h"
#include "base/trace_event/typed_macros.h"
#include "cc/base/math_util.h"
#include "components/viz/common/features.h"
#include "components/viz/common/quads/aggregated_render_pass.h"
#include "components/viz/common/quads/aggregated_render_pass_draw_quad.h"
#include "components/viz/common/quads/compositor_frame.h"
#include "components/viz/common/quads/compositor_render_pass_draw_quad.h"
#include "components/viz/common/quads/debug_border_draw_quad.h"
#include "components/viz/common/quads/draw_quad.h"
#include "components/viz/common/quads/offset_tag.h"
#include "components/viz/common/quads/shared_quad_state.h"
#include "components/viz/common/quads/solid_color_draw_quad.h"
#include "components/viz/common/quads/surface_draw_quad.h"
#include "components/viz/common/quads/texture_draw_quad.h"
#include "components/viz/common/surfaces/surface_range.h"
#include "components/viz/common/viz_utils.h"
#include "components/viz/service/debugger/viz_debugger.h"
#include "components/viz/service/display/aggregated_frame.h"
#include "components/viz/service/display/display_resource_provider.h"
#include "components/viz/service/display/overlay_candidate.h"
#include "components/viz/service/display/renderer_utils.h"
#include "components/viz/service/display/resolved_frame_data.h"
#include "components/viz/service/surfaces/surface.h"
#include "components/viz/service/surfaces/surface_allocation_group.h"
#include "components/viz/service/surfaces/surface_client.h"
#include "components/viz/service/surfaces/surface_manager.h"
#include "third_party/abseil-cpp/absl/cleanup/cleanup.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/transform.h"
#include "ui/gfx/geometry/vector2d.h"
#include "ui/gfx/overlay_transform_utils.h"
namespace viz {
struct MaskFilterInfoExt {
MaskFilterInfoExt() = default;
MaskFilterInfoExt(const gfx::MaskFilterInfo& mask_filter_info_arg,
bool is_fast_rounded_corner_arg,
const gfx::Transform target_transform)
: mask_filter_info(mask_filter_info_arg),
is_fast_rounded_corner(is_fast_rounded_corner_arg) {
mask_filter_info.ApplyTransform(target_transform);
}
// Returns true if the quads from |merge_render_pass| can be merged into
// the embedding render pass based on mask filter info.
// |parent_target_transform| shall be used to translate mask filter infos of
// |merge_render_pass.shared_quad_state_list| in the same coordinate space
// as the |mask_filter_info| is.
bool CanMergeMaskFilterInfo(
const CompositorRenderPass& merge_render_pass,
const gfx::Transform& parent_target_transform) const {
DCHECK(parent_target_transform.Preserves2dAxisAlignment());
// If the embedding quad has no mask filter, then we do not have to block
// merging.
if (mask_filter_info.IsEmpty()) {
return true;
}
// If the embedding quad has rounded corner and it is not a fast rounded
// corner, we cannot merge.
if (mask_filter_info.HasRoundedCorners() && !is_fast_rounded_corner) {
return false;
}
// If any of the quads in the render pass to merged has a mask filter of its
// own, then we have to check if that has fast rounded corners and they fit
// |mask_filter_info|'s ones. In that case, we can merge this render pass.
// Merge is impossible in all the other cases.
for (const auto* sqs : merge_render_pass.shared_quad_state_list) {
if (sqs->mask_filter_info.IsEmpty()) {
continue;
}
// We cannot handle rotation with mask filter as rotated content is unable
// to apply correct clip.
if (!sqs->quad_to_target_transform.Preserves2dAxisAlignment()) {
return false;
}
// Those must be fast rounded corners that enables us to squash mask
// filters.
if (sqs->mask_filter_info.HasRoundedCorners() &&
!sqs->is_fast_rounded_corner) {
return false;
}
if (sqs->mask_filter_info.HasGradientMask()) {
return false;
}
// Take the bounds of the sqs filter and apply clipping rect as it may
// make current mask fit the |mask_filter_info|'s bounds. Not doing so may
// result in marking this mask not suitable for merging while it never
// spans outside another mask.
auto rounded_corner_bounds = sqs->mask_filter_info.bounds();
if (sqs->clip_rect.has_value()) {
rounded_corner_bounds.Intersect(gfx::RectF(*sqs->clip_rect));
}
// Before checking if current mask's rounded corners do not intersect with
// the upper level rounded corner mask, its system coordinate must be
// transformed to that target's system coordinate.
rounded_corner_bounds =
parent_target_transform.MapRect(rounded_corner_bounds);
// This is the only case when quads of this render pass with the mask
// filter info that has fast rounded corners set can be merged into the
// embedding render pass. So, if they don't intersect with the "toplevel"
// rounded corners, we can merge.
if (!mask_filter_info.rounded_corner_bounds().Contains(
rounded_corner_bounds)) {
return false;
}
}
return true;
}
gfx::MaskFilterInfo mask_filter_info;
bool is_fast_rounded_corner;
};
namespace {
// Enum used for UMA histogram. These enum values must not be changed or
// reused.
enum class RenderPassDamage {
// Clipping at the root does not make the damage smaller than the output rect.
kOutputRect = 0,
// Clipping at the root will clip the render pass and make it smaller than
// output rect.
kRootClipped = 1,
// Full output rect damage was forced for this render pass.
kForceFullOutputRect = 2,
kMaxValue = kForceFullOutputRect,
};
// Used for determine when to treat opacity close to 1.f as opaque. The value is
// chosen to be smaller than 1/255.
constexpr float kOpacityEpsilon = 0.001f;
// Used as a limit for the amount of times the same delegated ink metadata can
// be attached to the aggregated frame.
constexpr int kMaxFramesWithIdenticalInkMetadata = 3;
void MoveMatchingRequests(
CompositorRenderPassId render_pass_id,
std::multimap<CompositorRenderPassId, std::unique_ptr<CopyOutputRequest>>*
copy_requests,
std::vector<std::unique_ptr<CopyOutputRequest>>* output_requests) {
auto request_range = copy_requests->equal_range(render_pass_id);
for (auto it = request_range.first; it != request_range.second; ++it) {
DCHECK(it->second);
output_requests->push_back(std::move(it->second));
}
copy_requests->erase(request_range.first, request_range.second);
}
// Create a clip rect for an aggregated quad from the original clip rect and
// the clip rect from the surface it's on.
std::optional<gfx::Rect> CalculateClipRect(
const std::optional<gfx::Rect> surface_clip,
const std::optional<gfx::Rect> quad_clip,
const gfx::Transform& target_transform) {
std::optional<gfx::Rect> out_clip;
if (surface_clip)
out_clip = surface_clip;
if (quad_clip) {
// TODO(jamesr): This only works if target_transform maps integer
// rects to integer rects.
gfx::Rect final_clip =
cc::MathUtil::MapEnclosingClippedRect(target_transform, *quad_clip);
if (out_clip)
out_clip->Intersect(final_clip);
else
out_clip = final_clip;
}
return out_clip;
}
// Creates a new SharedQuadState in |dest_render_pass| based on |source_sqs|
// plus additional modified values.
// - |source_sqs| is the SharedQuadState to copy from.
// - |quad_to_target_transform| replaces the equivalent |source_sqs| value.
// - |target_transform| is an additional transform to add. Used when merging the
// root render pass of a surface into the embedding render pass.
// - |quad_layer_rect| replaces the equivalent |source_sqs| value.
// - |visible_quad_layer_rect| replaces the equivalent |source_sqs| value.
// - |mask_filter_info_ext| replaces the equivalent |source_sqs| values.
// - |added_clip_rect| is an additional clip rect added to the quad clip rect.
// - |dest_render_pass| is where the new SharedQuadState will be created.
SharedQuadState* CopyAndScaleSharedQuadState(
const SharedQuadState* source_sqs,
const gfx::OverlayLayerId::NamespaceId& client_namespace_id,
const gfx::Transform& quad_to_target_transform,
const gfx::Transform& target_transform,
const gfx::Rect& quad_layer_rect,
const gfx::Rect& visible_quad_layer_rect,
const std::optional<gfx::Rect> added_clip_rect,
const MaskFilterInfoExt& mask_filter_info_ext,
AggregatedRenderPass* dest_render_pass) {
auto* shared_quad_state = dest_render_pass->CreateAndAppendSharedQuadState();
auto new_clip_rect = CalculateClipRect(added_clip_rect, source_sqs->clip_rect,
target_transform);
// target_transform contains any transformation that may exist
// between the context that these quads are being copied from (i.e. the
// surface's draw transform when aggregated from within a surface) to the
// target space of the pass. This will be identity except when copying the
// root draw pass from a surface into a pass when the surface draw quad's
// transform is not identity.
gfx::Transform new_transform = quad_to_target_transform;
new_transform.PostConcat(target_transform);
shared_quad_state->SetAll(
new_transform, quad_layer_rect, visible_quad_layer_rect,
mask_filter_info_ext.mask_filter_info, new_clip_rect,
source_sqs->are_contents_opaque, source_sqs->opacity,
source_sqs->blend_mode, source_sqs->sorting_context_id,
source_sqs->layer_id, mask_filter_info_ext.is_fast_rounded_corner);
shared_quad_state->layer_namespace_id = client_namespace_id;
return shared_quad_state;
}
// Creates a new SharedQuadState in |dest_render_pass| and copies |source_sqs|
// into it. See CopyAndScaleSharedQuadState() for full documentation.
SharedQuadState* CopySharedQuadState(
const SharedQuadState* source_sqs,
const gfx::OverlayLayerId::NamespaceId& client_namespace_id,
const gfx::Transform& target_transform,
const std::optional<gfx::Rect> added_clip_rect,
const MaskFilterInfoExt& mask_filter_info,
AggregatedRenderPass* dest_render_pass) {
return CopyAndScaleSharedQuadState(
source_sqs, client_namespace_id, source_sqs->quad_to_target_transform,
target_transform, source_sqs->quad_layer_rect,
source_sqs->visible_quad_layer_rect, added_clip_rect, mask_filter_info,
dest_render_pass);
}
void UpdatePersistentPassDataMergeState(ResolvedPassData& resolved_pass,
AggregatedRenderPass* dest_pass,
bool is_merged_pass) {
auto& persistent_data = resolved_pass.current_persistent_data();
PersistentPassData::MergeState merge_state =
is_merged_pass ? PersistentPassData::kAlwaysMerged
: PersistentPassData::kNotMerged;
if (persistent_data.merge_state == PersistentPassData::kInitState) {
// This is the first time it's embedded.
persistent_data.merge_state = merge_state;
} else if (persistent_data.merge_state != merge_state) {
persistent_data.merge_state = PersistentPassData::kSomeTimesMerged;
}
}
bool ChangeInMergeState(ResolvedPassData& resolved_pass) {
DCHECK(resolved_pass.current_persistent_data().merge_state !=
PersistentPassData::kInitState);
// If this is the first frame and previous_merge_state is empty,
// this function will returns false.
auto current_merge_state =
resolved_pass.current_persistent_data().merge_state;
auto previous_merge_state =
resolved_pass.previous_persistent_data().merge_state;
// Check if this render pass is merged to its parent render pass in the
// previous frame but is not in the current frame.
bool change_in_merged_pass =
previous_merge_state == PersistentPassData::kAlwaysMerged &&
current_merge_state == PersistentPassData::kNotMerged;
// If it's embedded multiple times and some are merged while some are not,
// just redraw the render pass. It's complicated to track individual change.
change_in_merged_pass |=
resolved_pass.current_persistent_data().merge_state ==
PersistentPassData::kSomeTimesMerged ||
resolved_pass.previous_persistent_data().merge_state ==
PersistentPassData::kSomeTimesMerged;
return change_in_merged_pass;
}
void UpdateNeedsRedraw(
ResolvedPassData& resolved_pass,
AggregatedRenderPass* dest_pass,
const std::optional<gfx::Rect> dest_root_target_clip_rect) {
// |dest_root_target_clip_rect| is the bounding box on the root surface where
// this render pass can be rendered into. It includes all ancestors' render
// pass output rects, RenderPassDrawQuad rect, SurfaceDrawQuad rect, and clip
// rects.
DCHECK(dest_root_target_clip_rect.has_value());
// Save the parent_clip_rect from the current frame.
auto& current_parent_clip_rect =
resolved_pass.current_persistent_data().parent_clip_rect;
current_parent_clip_rect.Union(dest_root_target_clip_rect.value());
// Get the parent_clip_rect from the previous frame;
auto& previous_parent_clip_rect =
resolved_pass.previous_persistent_data().parent_clip_rect;
// If the parent clip rect expands, the new area of the render pass output
// buffer has never been updated. Redraw is needed.
bool parent_clip_rect_expands =
!previous_parent_clip_rect.Contains(current_parent_clip_rect);
// Whether the render pass is merged with its parent render pass and changes.
bool change_in_merged_pass = ChangeInMergeState(resolved_pass);
// 1. Needs redraw when the current parent clip rect expands from the
// previous frame.
// 2. Needs full damage and redraw when it switched from merged to
// non-merged.
// 3. Needs full damage and redraw when it is in_copy_request_pass.
if (parent_clip_rect_expands ||
resolved_pass.aggregation().in_copy_request_pass ||
change_in_merged_pass) {
dest_pass->has_damage_from_contributing_content = true;
}
}
bool RenderPassNeedsFullDamage(ResolvedPassData& resolved_pass) {
auto& aggregation = resolved_pass.aggregation();
const bool can_skip_render_pass = base::FeatureList::IsEnabled(
features::kAllowUndamagedNonrootRenderPassToSkip);
if (can_skip_render_pass) {
// Needs full damage when
// 1. The render pass pixels will be saved, either by a copy request or into
// a cached render pass. This avoids a partially drawn render pass being
// saved.
// 2. A render pass is merged to its parent render pass in the previous
// frame but it's not in this frame.
return aggregation.in_cached_render_pass ||
aggregation.in_copy_request_pass ||
aggregation.in_pixel_moving_filter_pass ||
ChangeInMergeState(resolved_pass);
} else {
// Returns true if |resolved_pass| needs full damage. This is because:
// 1. The render pass pixels will be saved, either by a copy request or into
// a cached render pass. This avoids a partially drawn render pass being
// saved.
// 2. The render pass pixels will have a pixel moving foreground filter
// applied to them. In this case pixels outside the damage_rect can be
// moved inside the damage_rect by the filter.
return aggregation.in_cached_render_pass ||
aggregation.in_copy_request_pass ||
aggregation.in_pixel_moving_filter_pass;
}
}
// Computes an enclosing rect in target render pass coordinate space that bounds
// where |quad| may contribute pixels. This rect is computed by transforming the
// quads |visible_rect|, which is known to be contained by the quads |rect|, and
// transforming it into target render pass coordinate space. The rect is then
// clipped by SharedQuadState |clip_rect| if one exists.
//
// Since a quad can only damage pixels it can draw to, the drawable rect is also
// the maximum damage rect a quad can contribute (ignoring pixel-moving
// filters).
gfx::Rect ComputeDrawableRectForQuad(const DrawQuad* quad) {
const SharedQuadState* sqs = quad->shared_quad_state;
gfx::Rect drawable_rect = cc::MathUtil::MapEnclosingClippedRect(
sqs->quad_to_target_transform, quad->visible_rect);
if (sqs->clip_rect)
drawable_rect.Intersect(*sqs->clip_rect);
return drawable_rect;
}
// This function transforms a rect from its target space to the destination
// root target space. If clip_rect is valid, clipping is applied after
// transform.
gfx::Rect TransformRectToDestRootTargetSpace(
const gfx::Rect& rect_in_target_space,
const gfx::Transform& target_to_dest_transform,
const gfx::Transform& dest_to_root_target_transform,
const std::optional<gfx::Rect> dest_root_target_clip_rect) {
gfx::Transform target_to_dest_root_target_transform =
dest_to_root_target_transform * target_to_dest_transform;
gfx::Rect rect_in_root_target_space = cc::MathUtil::MapEnclosingClippedRect(
target_to_dest_root_target_transform, rect_in_target_space);
if (dest_root_target_clip_rect) {
rect_in_root_target_space.Intersect(*dest_root_target_clip_rect);
}
return rect_in_root_target_space;
}
} // namespace
constexpr base::TimeDelta SurfaceAggregator::kHistogramMinTime;
constexpr base::TimeDelta SurfaceAggregator::kHistogramMaxTime;
struct SurfaceAggregator::PrewalkResult {
// This is the set of Surfaces that were referenced by another Surface, but
// not included in a SurfaceDrawQuad.
base::flat_set<SurfaceId> undrawn_surfaces;
bool frame_sinks_changed = false;
bool page_fullscreen_mode = false;
gfx::ContentColorUsage content_color_usage = gfx::ContentColorUsage::kSRGB;
};
SurfaceAggregator::SurfaceAggregator(
SurfaceManager* manager,
DisplayResourceProvider* provider,
bool needs_surface_damage_rect_list,
ExtraPassForReadbackOption extra_pass_option,
bool prevent_merging_surfaces_to_root_pass)
: manager_(manager),
provider_(provider),
needs_surface_damage_rect_list_(needs_surface_damage_rect_list),
extra_pass_for_readback_option_(extra_pass_option),
prevent_merging_surfaces_to_root_pass_(
prevent_merging_surfaces_to_root_pass) {
DCHECK(manager_);
DCHECK(provider_);
manager_->AddObserver(this);
}
SurfaceAggregator::~SurfaceAggregator() {
manager_->RemoveObserver(this);
contained_surfaces_.clear();
contained_frame_sinks_.clear();
// Notify client of all surfaces being removed.
ProcessAddedAndRemovedSurfaces();
}
// This function is called at each render pass - CopyQuadsToPass().
void SurfaceAggregator::AddRenderPassFilterDamageToDamageList(
const ResolvedFrameData& resolved_frame,
const CompositorRenderPassDrawQuad* render_pass_quad,
const gfx::Transform& parent_target_transform,
const std::optional<gfx::Rect> dest_root_target_clip_rect,
const gfx::Transform& dest_transform_to_root_target) {
const CompositorRenderPassId child_pass_id = render_pass_quad->render_pass_id;
const ResolvedPassData& child_resolved_pass =
resolved_frame.GetRenderPassDataById(child_pass_id);
const CompositorRenderPass& child_render_pass =
child_resolved_pass.render_pass();
// Add damages from render passes with pixel-moving foreground filters or
// backdrop filters to the surface damage list.
if (!child_render_pass.filters.HasFilterThatMovesPixels() &&
!child_render_pass.backdrop_filters.HasFilterThatMovesPixels()) {
return;
}
gfx::Rect damage_rect = render_pass_quad->rect;
gfx::Rect damage_rect_in_target_space;
if (child_render_pass.filters.HasFilterThatMovesPixels()) {
// The size of pixel-moving foreground filter is allowed to expand.
// No intersecting shared_quad_state->clip_rect for the expanded rect.
damage_rect_in_target_space = GetTargetExpandedRectForPixelMovingFilters(
*render_pass_quad, child_render_pass.filters);
} else if (child_render_pass.backdrop_filters.HasFilterThatMovesPixels()) {
const auto* shared_quad_state = render_pass_quad->shared_quad_state;
damage_rect_in_target_space = cc::MathUtil::MapEnclosingClippedRect(
shared_quad_state->quad_to_target_transform, damage_rect);
if (shared_quad_state->clip_rect) {
damage_rect_in_target_space.Intersect(
shared_quad_state->clip_rect.value());
}
}
gfx::Rect damage_rect_in_root_target_space =
TransformRectToDestRootTargetSpace(
damage_rect_in_target_space, parent_target_transform,
dest_transform_to_root_target, dest_root_target_clip_rect);
// The whole render pass rect with pixel-moving foreground filters or
// backdrop filters is considered damaged if it intersects with the other
// damages.
if (damage_rect_in_root_target_space.Intersects(root_damage_rect_)) {
// Since |damage_rect_in_root_target_space| is available, just pass this
// rect and reset the other arguments.
AddSurfaceDamageToDamageList(
damage_rect_in_root_target_space,
/*parent_target_transform*/ gfx::Transform(),
/*dest_root_target_clip_rect*/ {},
/*dest_transform_to_root_target*/ gfx::Transform(),
/*resolved_frame=*/nullptr, /*zero_damage_texture_draw_quad=*/false);
}
}
void SurfaceAggregator::AddSurfaceDamageToDamageList(
const gfx::Rect& default_damage_rect,
const gfx::Transform& parent_target_transform,
const std::optional<gfx::Rect> dest_root_target_clip_rect,
const gfx::Transform& dest_transform_to_root_target,
ResolvedFrameData* resolved_frame,
bool zero_damage_texture_draw_quad) {
gfx::Rect damage_rect;
if (!resolved_frame) {
// When the surface is null, it's either the surface is lost or it comes
// from a render pass with filters.
damage_rect = default_damage_rect;
} else {
if (RenderPassNeedsFullDamage(resolved_frame->GetRootRenderPassData())) {
damage_rect = resolved_frame->GetOutputRect();
} else {
damage_rect = resolved_frame->GetSurfaceDamage();
}
}
if (damage_rect.IsEmpty() && !zero_damage_texture_draw_quad) {
current_zero_damage_rect_is_not_recorded_ = true;
return;
}
current_zero_damage_rect_is_not_recorded_ = false;
gfx::Rect damage_rect_in_root_target_space =
TransformRectToDestRootTargetSpace(
/*rect_in_target_space=*/damage_rect, parent_target_transform,
dest_transform_to_root_target, dest_root_target_clip_rect);
surface_damage_rect_list_->push_back(damage_rect_in_root_target_space);
}
// This function returns the overlay candidate quad ptr which has an
// overlay_damage_index pointing to the its damage rect in
// surface_damage_rect_list_. |overlay_damage_index| will be saved in the shared
// quad state later.
// This function is called at CopyQuadsToPass().
const DrawQuad* SurfaceAggregator::FindQuadWithOverlayDamage(
const CompositorRenderPass& source_pass,
AggregatedRenderPass* dest_pass,
const gfx::Transform& pass_to_root_target_transform,
size_t* overlay_damage_index) {
// If |source_pass| has per quad damage then don't try to assign the surface
// damage to a quad. The order of the surface damage rect list might not match
// quad z-order which breaks occlusion when computing damage excluding
// overlays, see crbug.com/404618616 and crbug.com/40224514.
if (source_pass.has_per_quad_damage) {
return nullptr;
}
// The occluding damage optimization currently relies on two things - there
// can't be any damage above the quad within the surface, and the quad needs
// its own SQS for the occluding_damage_rect metadata.
if (source_pass.quad_list.size() != 1) {
return nullptr;
}
const DrawQuad* target_quad = source_pass.quad_list.back();
// Surface damage for a render pass quad does not include damage from its
// children. We skip this quad to avoid the incomplete damage association.
if (target_quad->material == DrawQuad::Material::kCompositorRenderPass ||
target_quad->material == DrawQuad::Material::kSurfaceContent)
return nullptr;
// Zero damage is not recorded in the surface_damage_rect_list_.
// In this case, add an empty damage rect to the list so
// |overlay_damage_index| can save this index.
if (current_zero_damage_rect_is_not_recorded_) {
current_zero_damage_rect_is_not_recorded_ = false;
surface_damage_rect_list_->push_back(gfx::Rect());
}
// Before assigning a surface damage rect to this quad, make sure that it is
// not larger than the quad itself. This is possible when a quad is smaller
// than it was last frame, or when it moves. The damage should be the size of
// larger rect from last frame because we need to damage what's underneath the
// quad. So if we promote the now smaller quad to an overlay this frame we
// should not remove this damage rect. i.e. we should not assign the damage
// rect to this quad.
// For similar reasons, we should not assign damage to quads with non-axis
// aligned transforms, because those won't be promoted to overlay.
auto& damage_rect_in_root_space = surface_damage_rect_list_->back();
if (!damage_rect_in_root_space.IsEmpty()) {
gfx::Transform quad_to_root_transform =
pass_to_root_target_transform *
target_quad->shared_quad_state->quad_to_target_transform;
if (!quad_to_root_transform.Preserves2dAxisAlignment()) {
return nullptr;
}
gfx::RectF rect_in_root_space = cc::MathUtil::MapClippedRect(
quad_to_root_transform, gfx::RectF(target_quad->rect));
// Because OverlayCandidate.damage_rect is a gfx::Rect, we can't really
// assign damage if the display_rect is not pixel-aligned.
if (!gfx::IsNearestRectWithinDistance(rect_in_root_space, 0.01f)) {
return nullptr;
}
// Now, in order to check whether the display rect (gfx::RectF) contains the
// damage rect (gfx::Rect), we can safely round the former so that we do not
// fail to assign the damage due to 4-6 digits difference.
if (!gfx::ToEnclosingRectIgnoringError(rect_in_root_space)
.Contains(damage_rect_in_root_space)) {
return nullptr;
}
}
// The latest surface damage rect.
*overlay_damage_index = surface_damage_rect_list_->size() - 1;
return target_quad;
}
bool SurfaceAggregator::CanPotentiallyMergePass(
const SurfaceDrawQuad& surface_quad) {
const SharedQuadState* sqs = surface_quad.shared_quad_state;
return surface_quad.allow_merge &&
base::IsApproximatelyEqual(sqs->opacity, 1.f, kOpacityEpsilon);
}
void SurfaceAggregator::OnSurfaceDestroyed(const SurfaceId& surface_id) {
DCHECK(!is_inside_aggregate_);
auto iter = resolved_frames_.find(surface_id);
if (iter != resolved_frames_.end()) {
TRACE_EVENT0("viz", "SurfaceAggregator::SurfaceDestroyed");
resolved_frames_.erase(iter);
}
}
const ResolvedFrameData* SurfaceAggregator::GetLatestFrameData(
const SurfaceId& surface_id) {
DCHECK(!is_inside_aggregate_);
return GetResolvedFrame(surface_id);
}
ResolvedFrameData* SurfaceAggregator::GetResolvedFrame(
const SurfaceRange& range) {
// Find latest in flight surface and cache that result for the duration of
// this aggregation, then find ResolvedFrameData for that surface.
auto iter = resolved_surface_ranges_.find(range);
if (iter == resolved_surface_ranges_.end()) {
auto* surface = manager_->GetLatestInFlightSurface(range);
SurfaceId surface_id = surface ? surface->surface_id() : SurfaceId();
iter = resolved_surface_ranges_.emplace(range, surface_id).first;
}
if (!iter->second.is_valid()) {
// There is no surface for `range`.
return nullptr;
}
return GetResolvedFrame(iter->second);
}
ResolvedFrameData* SurfaceAggregator::GetResolvedFrame(
const SurfaceId& surface_id) {
DCHECK(surface_id.is_valid());
auto iter = resolved_frames_.find(surface_id);
if (iter == resolved_frames_.end()) {
auto* surface = manager_->GetSurfaceForId(surface_id);
if (!surface || !surface->HasActiveFrame()) {
// If there is no resolved surface or the surface has no active frame
// there is no resolved frame data to return.
return nullptr;
}
AggregatedRenderPassId prev_root_pass_id;
uint64_t prev_frame_index = 0u;
// If this is the first frame in a new surface there might be damage
// compared to the previous frame in a different surface.
if (surface->surface_id() != surface->previous_frame_surface_id()) {
auto prev_resolved_frame_iter =
resolved_frames_.find(surface->previous_frame_surface_id());
if (prev_resolved_frame_iter != resolved_frames_.end()) {
auto& prev_resolved_frame = prev_resolved_frame_iter->second;
if (prev_resolved_frame.is_valid()) {
prev_frame_index = prev_resolved_frame.previous_frame_index();
prev_root_pass_id =
prev_resolved_frame.GetRootRenderPassData().remapped_id();
}
}
}
iter = resolved_frames_
.emplace(
std::piecewise_construct, std::forward_as_tuple(surface_id),
std::forward_as_tuple(provider_, surface, prev_frame_index,
prev_root_pass_id))
.first;
}
ResolvedFrameData& resolved_frame = iter->second;
if (is_inside_aggregate_ && !resolved_frame.WasUsedInAggregation()) {
resolved_frame.UpdateForAggregation(render_pass_id_generator_);
// Lookup function allows ResolvedFrameData to find OffsetTagValues.
auto lookup_fn = [this](const OffsetTagDefinition& tag_def) {
if (auto* provider_frame = GetResolvedFrame(tag_def.provider)) {
auto& tag_values = provider_frame->GetMetadata().offset_tag_values;
for (auto& tag_value : tag_values) {
if (tag_def.tag == tag_value.tag) {
return tag_value.offset;
}
}
}
return gfx::Vector2dF();
};
resolved_frame.UpdateOffsetTags(lookup_fn);
}
return &resolved_frame;
}
void SurfaceAggregator::HandleSurfaceQuad(
const CompositorRenderPass& source_pass,
const SurfaceDrawQuad* surface_quad,
const gfx::OverlayLayerId::NamespaceId& embedder_client_namespace_id,
float parent_device_scale_factor,
const gfx::Transform& target_transform,
const std::optional<gfx::Rect> added_clip_rect,
const std::optional<gfx::Rect> dest_root_target_clip_rect,
AggregatedRenderPass* dest_pass,
const MaskFilterInfoExt& mask_filter_info) {
DCHECK(target_transform.Preserves2dAxisAlignment());
SurfaceId primary_surface_id = surface_quad->surface_range.end();
ResolvedFrameData* resolved_frame =
GetResolvedFrame(surface_quad->surface_range);
// |added_clip_rect| should be bounded by the output_rect of the render pass
// that contains |surface_quad|.
std::optional<gfx::Rect> surface_clip_rect = CalculateClipRect(
added_clip_rect, source_pass.output_rect, target_transform);
// If a new surface is going to be emitted, add the surface_quad rect to
// |surface_damage_rect_list_| for overlays. The whole quad is considered
// damaged.
std::optional<gfx::Rect> combined_clip_rect;
gfx::Rect surface_in_target_space = ComputeDrawableRectForQuad(surface_quad);
surface_in_target_space.Intersect(source_pass.output_rect);
if (needs_surface_damage_rect_list_ &&
(!resolved_frame || resolved_frame->surface_id() != primary_surface_id)) {
// If using a fallback surface the surface content may be stretched or
// have gutter. If the surface is missing the content will be filled
// with a solid color. In both cases we no longer have frame-to-frame
// damage so treat the entire SurfaceDrawQuad visible_rect as damaged.
// |combined_clip_rect| is the transforming and clipping result of the
// entire SurfaceDrawQuad visible_rect on the root target space of the
// root surface.
AddSurfaceDamageToDamageList(
surface_in_target_space, target_transform, dest_root_target_clip_rect,
dest_pass->transform_to_root_target,
/*resolved_frame=*/nullptr, /*zero_damage_texture_draw_quad=*/false);
}
// combined_clip_rect is the result of |dest_root_target_clip_rect|
// intersecting |surface_quad| on the root target space of the root surface.
combined_clip_rect = TransformRectToDestRootTargetSpace(
/*rect_in_target_space=*/surface_in_target_space, target_transform,
dest_pass->transform_to_root_target, dest_root_target_clip_rect);
// If there's no fallback surface ID available, then simply emit a
// SolidColorDrawQuad with the provided default background color. This
// can happen after a Viz process crash.
if (!resolved_frame) {
EmitDefaultBackgroundColorQuad(surface_quad, embedder_client_namespace_id,
target_transform, surface_clip_rect,
dest_pass, mask_filter_info);
return;
}
if (resolved_frame->surface_id() != primary_surface_id &&
!surface_quad->stretch_content_to_fill_bounds) {
gfx::Rect fallback_rect(resolved_frame->size_in_pixels());
float scale_ratio =
parent_device_scale_factor / resolved_frame->device_scale_factor();
fallback_rect =
gfx::ScaleToEnclosingRect(fallback_rect, scale_ratio, scale_ratio);
fallback_rect =
gfx::IntersectRects(fallback_rect, surface_quad->visible_rect);
auto background_color = resolved_frame->GetMetadata().root_background_color;
// TODO(crbug.com/40219248): CompositorFrameMetadata to SkColor4f
EmitGutterQuadsIfNecessary(surface_quad->visible_rect, fallback_rect,
surface_quad->shared_quad_state,
embedder_client_namespace_id, target_transform,
surface_clip_rect, background_color, dest_pass,
mask_filter_info);
}
EmitSurfaceContent(*resolved_frame, parent_device_scale_factor, surface_quad,
embedder_client_namespace_id, target_transform,
surface_clip_rect, combined_clip_rect, dest_pass,
mask_filter_info);
}
void SurfaceAggregator::EmitSurfaceContent(
ResolvedFrameData& resolved_frame,
float parent_device_scale_factor,
const SurfaceDrawQuad* surface_quad,
const gfx::OverlayLayerId::NamespaceId& embedder_client_namespace_id,
const gfx::Transform& target_transform,
const std::optional<gfx::Rect> added_clip_rect,
const std::optional<gfx::Rect> dest_root_target_clip_rect,
AggregatedRenderPass* dest_pass,
const MaskFilterInfoExt& mask_filter_info) {
Surface* surface = resolved_frame.surface();
// If this surface's id is already in our referenced set then it creates
// a cycle in the graph and should be dropped.
SurfaceId surface_id = surface->surface_id();
if (referenced_surfaces_.count(surface_id))
return;
// If we are stretching content to fill the SurfaceDrawQuad, or if the device
// scale factor mismatches between content and SurfaceDrawQuad, we appply an
// additional scale.
float extra_content_scale_x, extra_content_scale_y;
if (surface_quad->stretch_content_to_fill_bounds) {
const gfx::Rect& surface_quad_rect = surface_quad->rect;
// Stretches the surface contents to exactly fill the layer bounds,
// regardless of scale or aspect ratio differences.
extra_content_scale_x =
surface_quad_rect.width() /
static_cast<float>(resolved_frame.size_in_pixels().width());
extra_content_scale_y =
surface_quad_rect.height() /
static_cast<float>(resolved_frame.size_in_pixels().height());
} else {
extra_content_scale_x = extra_content_scale_y =
parent_device_scale_factor / resolved_frame.device_scale_factor();
}
float inverse_extra_content_scale_x = SK_Scalar1 / extra_content_scale_x;
float inverse_extra_content_scale_y = SK_Scalar1 / extra_content_scale_y;
const SharedQuadState* surface_quad_sqs = surface_quad->shared_quad_state;
gfx::Transform scaled_quad_to_target_transform(
surface_quad_sqs->quad_to_target_transform);
scaled_quad_to_target_transform.Scale(extra_content_scale_x,
extra_content_scale_y);
// A map keyed by RenderPass id.
Surface::CopyRequestsMap copy_requests;
if (take_copy_requests_) {
surface->TakeCopyOutputRequests(©_requests);
}
if (!resolved_frame.is_valid()) {
// As |copy_requests| goes out-of-scope, all copy requests in that container
// will auto-send an empty result upon destruction.
return;
}
const auto& frame_metadata = resolved_frame.GetMetadata();
flow_ids_for_resolved_frames_.insert(frame_metadata.begin_frame_ack.trace_id);
referenced_surfaces_.insert(surface_id);
gfx::Transform combined_transform = scaled_quad_to_target_transform;
combined_transform.PostConcat(target_transform);
// If the SurfaceDrawQuad is marked as being reflected and surface contents
// are going to be scaled then keep the RenderPass. This allows the reflected
// surface to be drawn with AA enabled for smooth scaling and preserves the
// original reflector scaling behaviour which scaled a TextureLayer.
bool reflected_and_scaled =
surface_quad->is_reflection &&
!scaled_quad_to_target_transform.IsIdentityOrTranslation();
const bool pass_is_mergeable =
CanPotentiallyMergePass(*surface_quad) && !reflected_and_scaled &&
combined_transform.Preserves2dAxisAlignment() &&
mask_filter_info.CanMergeMaskFilterInfo(
resolved_frame.GetRootRenderPassData().render_pass(),
combined_transform) &&
!resolved_frame.GetRootRenderPassData().aggregation().prevent_merge;
// When a surface has video capture enabled, but no copy requests, we do not
// require an intermediate surface. However, video capture being enabled is a
// hint that we will have a copy request soon, so we prevent |merge_pass| to
// avoid thrashing on the render pass backing allocation.
const bool has_video_capture =
!copy_requests.empty() || surface->IsVideoCaptureOnFromClient();
const bool merge_pass = pass_is_mergeable && !has_video_capture;
// Update PersistentPassData.merge_status of the root render pass of the
// current frame before making a call to AddSurfaceDamageToDamageList() where
// RenderPassNeedsFullDamage() is called and needs root pass |merge_state|
// info.
UpdatePersistentPassDataMergeState(resolved_frame.GetRootRenderPassData(),
dest_pass, merge_pass);
if (needs_surface_damage_rect_list_ && resolved_frame.WillDraw()) {
AddSurfaceDamageToDamageList(
/*default_damage_rect =*/gfx::Rect(), combined_transform,
dest_root_target_clip_rect, dest_pass->transform_to_root_target,
&resolved_frame, /*zero_damage_texture_draw_quad=*/false);
}
if (frame_metadata.delegated_ink_metadata) {
AggregatedRenderPassId render_pass_with_delegated_ink =
merge_pass ? dest_pass->id
: resolved_frame.GetRootRenderPassData().remapped_id();
// Copy delegated ink metadata from the compositor frame metadata. This
// prevents the delegated ink trail from flickering if a compositor frame
// is not generated due to a delayed main frame.
TransformAndStoreDelegatedInkMetadata(
dest_pass->transform_to_root_target * combined_transform,
frame_metadata.delegated_ink_metadata.get(),
render_pass_with_delegated_ink);
}
// TODO(fsamuel): Move this to a separate helper function.
auto& resolved_passes = resolved_frame.GetResolvedPasses();
size_t num_render_passes = resolved_passes.size();
size_t passes_to_copy =
merge_pass ? num_render_passes - 1 : num_render_passes;
for (size_t j = 0; j < passes_to_copy; ++j) {
ResolvedPassData& resolved_pass = resolved_passes[j];
const CompositorRenderPass& source = resolved_pass.render_pass();
size_t sqs_size = source.shared_quad_state_list.size();
size_t dq_size = source.quad_list.size();
auto copy_pass = std::make_unique<AggregatedRenderPass>(sqs_size, dq_size);
gfx::Rect output_rect = source.output_rect;
if (max_render_target_size_ > 0) {
output_rect.set_width(
std::min(output_rect.width(), max_render_target_size_));
output_rect.set_height(
std::min(output_rect.height(), max_render_target_size_));
}
copy_pass->SetAll(
resolved_pass.remapped_id(), output_rect, output_rect,
source.transform_to_root_target, source.filters,
source.backdrop_filters, source.backdrop_filter_bounds,
root_content_color_usage_, source.has_transparent_background,
source.cache_render_pass, resolved_pass.aggregation().has_damage,
source.generate_mipmap);
copy_pass->is_from_surface_root_pass = resolved_pass.is_root();
UpdatePersistentPassDataMergeState(resolved_pass, copy_pass.get(),
/*is_merged_pass=*/false);
MoveMatchingRequests(source.id, ©_requests, ©_pass->copy_requests);
// Contributing passes aggregated in to the pass list need to take the
// transform of the surface quad into account to update their transform to
// the root surface.
copy_pass->transform_to_root_target.PostConcat(combined_transform);
copy_pass->transform_to_root_target.PostConcat(
dest_pass->transform_to_root_target);
CopyQuadsToPass(resolved_frame, resolved_pass, copy_pass.get(),
resolved_frame.device_scale_factor(), gfx::Transform(), {},
dest_root_target_clip_rect, MaskFilterInfoExt(),
surface_quad->override_child_filter_quality,
surface_quad->override_child_dynamic_range_limit);
SetRenderPassDamageRect(copy_pass.get(), resolved_pass);
dest_pass_list_->push_back(std::move(copy_pass));
}
if (surface->IsVideoCaptureOnFromClient()) {
CHECK(!merge_pass);
dest_pass_list_->back()->video_capture_enabled = true;
}
auto& resolved_root_pass = resolved_frame.GetRootRenderPassData();
// This hack allows for quads that require overlay to appear in a render pass
// for a copy request as well as be merged into the dest pass (eventually the
// root) to be promoted to overlay. This allows e.g. protected content to be
// visible to the user, even if something is capturing the tab (the protected
// content will still not appear in the capture). Note this does not handle
// the case when the root pass is captured with protected content, which needs
// to be handled during overlay processing.
//
// It works by preventing merging when there is a copy request (as usual), so
// we have an intermediate render pass (and backing) that can service the copy
// request. Then, we detect here if the render pass has quads that require
// overlay and could've otherwise merged. If so, we force a merge, resulting
// in a copy of the render pass quads in the intermediate pass and a copy in
// the dest pass. Since we are not copying the copy request itself to the dest
// pass, the quads that require overlay can still be promoted to overlay.
const bool allow_forced_merge_pass = base::FeatureList::IsEnabled(
features::kAllowForceMergeRenderPassWithRequireOverlayQuads);
const bool force_merge_pass =
allow_forced_merge_pass && !merge_pass && pass_is_mergeable &&
std::ranges::any_of(dest_pass_list_->back()->quad_list,
&OverlayCandidate::RequiresOverlay);
if (merge_pass || force_merge_pass) {
// Compute a clip rect in |dest_pass| coordinate space to ensure merged
// surface cannot draw outside where a non-merged surface would draw. An
// enclosing rect in |surface_quad| target render pass coordinate space is
// computed, then transformed into |dest_pass| coordinate space and finally
// that is intersected with existing |added_clip_rect|.
std::optional<gfx::Rect> surface_quad_clip = CalculateClipRect(
added_clip_rect, ComputeDrawableRectForQuad(surface_quad),
target_transform);
// UpdatePersistentPassDataMergeState() has been called earlier.
CopyQuadsToPass(resolved_frame, resolved_root_pass, dest_pass,
resolved_frame.device_scale_factor(), combined_transform,
surface_quad_clip, dest_root_target_clip_rect,
mask_filter_info,
surface_quad->override_child_filter_quality,
surface_quad->override_child_dynamic_range_limit);
} else {
auto* shared_quad_state = CopyAndScaleSharedQuadState(
surface_quad_sqs, embedder_client_namespace_id,
scaled_quad_to_target_transform, target_transform,
gfx::ScaleToEnclosingRect(surface_quad_sqs->quad_layer_rect,
inverse_extra_content_scale_x,
inverse_extra_content_scale_y),
gfx::ScaleToEnclosingRect(surface_quad_sqs->visible_quad_layer_rect,
inverse_extra_content_scale_x,
inverse_extra_content_scale_y),
added_clip_rect, mask_filter_info, dest_pass);
// At this point, we need to calculate three values in order to construct
// the CompositorRenderPassDrawQuad:
// |quad_rect| - A rectangle representing the RenderPass's output area in
// content space. This is equal to the root render pass (|last_pass|)
// output rect.
gfx::Rect quad_rect = resolved_root_pass.render_pass().output_rect;
// |quad_visible_rect| - A rectangle representing the visible portion of
// the RenderPass, in content space. As the SurfaceDrawQuad being
// embedded may be clipped further than its root render pass, we use the
// surface quad's value - |source_visible_rect|.
//
// There may be an |extra_content_scale_x| applied when going from this
// render pass's content space to the surface's content space, we remove
// this so that |quad_visible_rect| is in the render pass's content
// space.
gfx::Rect quad_visible_rect(gfx::ScaleToEnclosingRect(
surface_quad->visible_rect, inverse_extra_content_scale_x,
inverse_extra_content_scale_y));
// |tex_coord_rect| - A rectangle representing the bounds of the texture
// in the RenderPass's |quad_rect|. Not in content space, instead as an
// offset within |quad_rect|.
gfx::RectF tex_coord_rect = gfx::RectF(gfx::SizeF(quad_rect.size()));
// We can't produce content outside of |quad_rect|, so clip the visible
// rect if necessary.
quad_visible_rect.Intersect(quad_rect);
auto remapped_pass_id = resolved_root_pass.remapped_id();
if (quad_visible_rect.IsEmpty()) {
std::erase_if(*dest_pass_list_,
[&remapped_pass_id](
const std::unique_ptr<AggregatedRenderPass>& pass) {
return pass->id == remapped_pass_id;
});
} else {
auto* quad =
dest_pass->CreateAndAppendDrawQuad<AggregatedRenderPassDrawQuad>();
quad->SetNew(shared_quad_state, quad_rect, quad_visible_rect,
remapped_pass_id, kInvalidResourceId, gfx::RectF(),
gfx::Size(), gfx::Vector2dF(1.0f, 1.0f), gfx::PointF(),
tex_coord_rect,
/*force_anti_aliasing_off=*/false,
/* backdrop_filter_quality*/ 1.0f);
}
}
referenced_surfaces_.erase(surface_id);
}
void SurfaceAggregator::EmitDefaultBackgroundColorQuad(
const SurfaceDrawQuad* surface_quad,
const gfx::OverlayLayerId::NamespaceId& embedder_client_namespace_id,
const gfx::Transform& target_transform,
const std::optional<gfx::Rect> clip_rect,
AggregatedRenderPass* dest_pass,
const MaskFilterInfoExt& mask_filter_info) {
TRACE_EVENT1("viz", "SurfaceAggregator::EmitDefaultBackgroundColorQuad",
"surface_range", surface_quad->surface_range.ToString());
// No matching surface was found so create a SolidColorDrawQuad with the
// SurfaceDrawQuad default background color.
SkColor4f background_color = surface_quad->default_background_color;
auto* shared_quad_state = CopySharedQuadState(
surface_quad->shared_quad_state, embedder_client_namespace_id,
target_transform, clip_rect, mask_filter_info, dest_pass);
auto* solid_color_quad =
dest_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>();
solid_color_quad->SetNew(shared_quad_state, surface_quad->rect,
surface_quad->visible_rect, background_color, false);
}
void SurfaceAggregator::EmitGutterQuadsIfNecessary(
const gfx::Rect& primary_rect,
const gfx::Rect& fallback_rect,
const SharedQuadState* primary_shared_quad_state,
const gfx::OverlayLayerId::NamespaceId& embedder_client_namespace_id,
const gfx::Transform& target_transform,
const std::optional<gfx::Rect> clip_rect,
SkColor4f background_color,
AggregatedRenderPass* dest_pass,
const MaskFilterInfoExt& mask_filter_info) {
bool has_transparent_background = background_color == SkColors::kTransparent;
// If the fallback Surface's active CompositorFrame has a non-transparent
// background then compute gutter.
if (has_transparent_background)
return;
if (fallback_rect.width() < primary_rect.width()) {
// The right gutter also includes the bottom-right corner, if necessary.
gfx::Rect right_gutter_rect(fallback_rect.right(), primary_rect.y(),
primary_rect.width() - fallback_rect.width(),
primary_rect.height());
SharedQuadState* shared_quad_state = CopyAndScaleSharedQuadState(
primary_shared_quad_state, embedder_client_namespace_id,
primary_shared_quad_state->quad_to_target_transform, target_transform,
right_gutter_rect, right_gutter_rect, clip_rect, mask_filter_info,
dest_pass);
auto* right_gutter =
dest_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>();
right_gutter->SetNew(shared_quad_state, right_gutter_rect,
right_gutter_rect, background_color, false);
}
if (fallback_rect.height() < primary_rect.height()) {
gfx::Rect bottom_gutter_rect(
primary_rect.x(), fallback_rect.bottom(), fallback_rect.width(),
primary_rect.height() - fallback_rect.height());
SharedQuadState* shared_quad_state = CopyAndScaleSharedQuadState(
primary_shared_quad_state, embedder_client_namespace_id,
primary_shared_quad_state->quad_to_target_transform, target_transform,
bottom_gutter_rect, bottom_gutter_rect, clip_rect, mask_filter_info,
dest_pass);
auto* bottom_gutter =
dest_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>();
bottom_gutter->SetNew(shared_quad_state, bottom_gutter_rect,
bottom_gutter_rect, background_color, false);
}
}
void SurfaceAggregator::AddRootReadbackPass() {
if (extra_pass_for_readback_option_ == ExtraPassForReadbackOption::kNone) {
return;
}
auto* root_render_pass = dest_pass_list_->back().get();
gfx::Rect output_rect = root_render_pass->output_rect;
CHECK(root_render_pass->transform_to_root_target == gfx::Transform());
bool needs_readback_pass = false;
// Check if there are any render passes that draw into the root pass with
// a backdrop filter.
base::flat_set<AggregatedRenderPassId> pass_ids_drawing_to_root;
for (auto* quad : root_render_pass->quad_list) {
if (auto* render_pass_quad =
quad->DynamicCast<AggregatedRenderPassDrawQuad>()) {
pass_ids_drawing_to_root.insert(render_pass_quad->render_pass_id);
}
}
if (!pass_ids_drawing_to_root.empty()) {
for (auto& render_pass : *dest_pass_list_) {
if (!pass_ids_drawing_to_root.contains(render_pass->id))
continue;
if (!render_pass->backdrop_filters.IsEmpty()) {
needs_readback_pass = true;
break;
}
}
}
if (extra_pass_for_readback_option_ ==
ExtraPassForReadbackOption::kAlwaysAddPass) {
needs_readback_pass = true;
}
if (needs_readback_pass != last_frame_had_readback_pass_)
root_render_pass->damage_rect = output_rect;
last_frame_had_readback_pass_ = needs_readback_pass;
if (!last_frame_had_readback_pass_)
return;
if (!readback_render_pass_id_) {
readback_render_pass_id_ = render_pass_id_generator_.GenerateNextId();
}
// Ensure the root-that's-non-root pass is cleared to fully transparent first.
bool has_transparent_background =
root_render_pass->has_transparent_background;
root_render_pass->has_transparent_background = true;
AddRenderPassHelper(readback_render_pass_id_, output_rect,
root_render_pass->damage_rect, root_content_color_usage_,
has_transparent_background,
/*quad_state_to_target_transform=*/gfx::Transform(),
/*quad_state_contents_opaque=*/false,
SkBlendMode::kSrcOver, root_render_pass->id);
}
void SurfaceAggregator::AddDisplayTransformPass() {
if (dest_pass_list_->empty())
return;
auto* root_render_pass = dest_pass_list_->back().get();
DCHECK(root_render_pass->transform_to_root_target == root_surface_transform_);
if (!display_transform_render_pass_id_) {
display_transform_render_pass_id_ =
render_pass_id_generator_.GenerateNextId();
}
bool are_contents_opaque = true;
for (const auto* sqs : root_render_pass->shared_quad_state_list) {
if (!sqs->are_contents_opaque) {
are_contents_opaque = false;
break;
}
}
AddRenderPassHelper(
display_transform_render_pass_id_,
cc::MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
root_surface_transform_, root_render_pass->output_rect),
cc::MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
root_surface_transform_, root_render_pass->damage_rect),
root_render_pass->content_color_usage,
root_render_pass->has_transparent_background, root_surface_transform_,
are_contents_opaque, SkBlendMode::kSrcOver, root_render_pass->id);
}
void SurfaceAggregator::AddRenderPassHelper(
AggregatedRenderPassId render_pass_id,
const gfx::Rect& render_pass_output_rect,
const gfx::Rect& render_pass_damage_rect,
gfx::ContentColorUsage pass_color_usage,
bool pass_has_transparent_background,
const gfx::Transform& quad_state_to_target_transform,
bool quad_state_contents_opaque,
SkBlendMode quad_state_blend_mode,
AggregatedRenderPassId quad_pass_id) {
gfx::Rect current_output_rect = dest_pass_list_->back()->output_rect;
auto render_pass = std::make_unique<AggregatedRenderPass>(1, 1);
render_pass->SetAll(render_pass_id, render_pass_output_rect,
render_pass_damage_rect, gfx::Transform(),
/*filters=*/cc::FilterOperations(),
/*backdrop_filters=*/cc::FilterOperations(),
/*backdrop_filter_bounds=*/SkPath(), pass_color_usage,
pass_has_transparent_background,
/*cache_render_pass=*/false,
/*has_damage_from_contributing_content=*/false,
/*generate_mipmap=*/false);
auto* shared_quad_state = render_pass->CreateAndAppendSharedQuadState();
shared_quad_state->SetAll(
quad_state_to_target_transform,
/*layer_rect=*/current_output_rect,
/*visible_layer_rect=*/current_output_rect, gfx::MaskFilterInfo(),
/*clip=*/std::nullopt, quad_state_contents_opaque, /*opacity_f=*/1.f,
quad_state_blend_mode, /*sorting_context=*/0, /*layer_id*/ 0u,
/*fast_rounded_corner=*/false);
auto* quad =
render_pass->CreateAndAppendDrawQuad<AggregatedRenderPassDrawQuad>();
quad->SetNew(shared_quad_state, current_output_rect, current_output_rect,
quad_pass_id, kInvalidResourceId, gfx::RectF(), gfx::Size(),
gfx::Vector2dF(1.0f, 1.0f), gfx::PointF(),
gfx::RectF(current_output_rect),
/*force_anti_aliasing_off=*/false,
/*backdrop_filter_quality*/ 1.0f);
dest_pass_list_->push_back(std::move(render_pass));
}
void SurfaceAggregator::CopyQuadsToPass(
ResolvedFrameData& resolved_frame,
ResolvedPassData& resolved_pass,
AggregatedRenderPass* dest_pass,
float parent_device_scale_factor,
const gfx::Transform& target_transform,
const std::optional<gfx::Rect> clip_rect,
const std::optional<gfx::Rect> dest_root_target_clip_rect,
const MaskFilterInfoExt& parent_mask_filter_info_ext,
std::optional<cc::PaintFlags::FilterQuality> override_filter_quality,
std::optional<cc::PaintFlags::DynamicRangeLimitMixture>
override_dynamic_range_limit) {
const CompositorRenderPass& source_pass = resolved_pass.render_pass();
const QuadList& source_quad_list = source_pass.quad_list;
const SharedQuadState* last_copied_source_shared_quad_state = nullptr;
#if DCHECK_IS_ON()
const SharedQuadStateList& source_shared_quad_state_list =
source_pass.shared_quad_state_list;
// If quads have come in with SharedQuadState out of order, or when quads have
// invalid SharedQuadState pointer, it should DCHECK.
auto sqs_iter = source_shared_quad_state_list.cbegin();
for (auto* quad : source_quad_list) {
while (sqs_iter != source_shared_quad_state_list.cend() &&
quad->shared_quad_state != *sqs_iter) {
++sqs_iter;
}
DCHECK(sqs_iter != source_shared_quad_state_list.cend());
}
#endif
const gfx::Transform pass_to_dest_root_target_transform =
dest_pass->transform_to_root_target * target_transform;
size_t overlay_damage_index = 0;
const DrawQuad* quad_with_overlay_damage_index = nullptr;
// Only process the damage rect at the root render pass, once per surface.
if (needs_surface_damage_rect_list_ &&
resolved_pass.aggregation().will_draw && resolved_pass.is_root()) {
quad_with_overlay_damage_index = FindQuadWithOverlayDamage(
source_pass, dest_pass, pass_to_dest_root_target_transform,
&overlay_damage_index);
}
// Add render pass |output_rect| to |dest_root_target_clip_rect|.
auto new_dest_root_target_clip_rect = CalculateClipRect(
dest_root_target_clip_rect, resolved_pass.render_pass().output_rect,
pass_to_dest_root_target_transform);
UpdateNeedsRedraw(resolved_pass, dest_pass, new_dest_root_target_clip_rect);
size_t quad_index = 0;
auto& resolved_draw_quads = resolved_pass.draw_quads();
const gfx::OverlayLayerId::NamespaceId client_namespace_id =
resolved_frame.GetClientNamespaceId();
for (auto* quad : source_quad_list) {
const ResolvedQuadData& quad_data = resolved_draw_quads[quad_index++];
// Both cannot be set at once (rounded corners are exception to this). If
// this happens then a surface is being merged when it should not.
DCHECK(!quad->shared_quad_state->mask_filter_info.HasGradientMask() ||
!parent_mask_filter_info_ext.mask_filter_info.HasGradientMask());
MaskFilterInfoExt new_mask_filter_info_ext = parent_mask_filter_info_ext;
if (!quad->shared_quad_state->mask_filter_info.IsEmpty()) {
new_mask_filter_info_ext = MaskFilterInfoExt(
quad->shared_quad_state->mask_filter_info,
quad->shared_quad_state->is_fast_rounded_corner, target_transform);
}
if (quad->material == DrawQuad::Material::kSharedElement) {
// SharedElement quads should've been resolved before aggregation.
continue;
} else if (const auto* surface_quad =
quad->DynamicCast<SurfaceDrawQuad>()) {
// HandleSurfaceQuad may add other shared quad state, so reset the
// current data.
last_copied_source_shared_quad_state = nullptr;
if (!surface_quad->surface_range.end().is_valid())
continue;
HandleSurfaceQuad(source_pass, surface_quad, client_namespace_id,
parent_device_scale_factor, target_transform, clip_rect,
new_dest_root_target_clip_rect, dest_pass,
new_mask_filter_info_ext);
} else {
// Here we output the optional quad's |per_quad_damage| to the
// |surface_damage_rect_list_|. Any non per quad damage associated with
// this |source_pass| will have been added to the
// |surface_damage_rect_list_| before this phase.
bool needs_sqs =
quad->shared_quad_state != last_copied_source_shared_quad_state;
bool has_per_quad_damage =
source_pass.has_per_quad_damage &&
GetOptionalDamageRectFromQuad(quad).has_value() &&
resolved_pass.aggregation().will_draw;
if (needs_sqs || has_per_quad_damage) {
SharedQuadState* dest_shared_quad_state = CopySharedQuadState(
quad->shared_quad_state, client_namespace_id, target_transform,
clip_rect, new_mask_filter_info_ext, dest_pass);
if (has_per_quad_damage) {
auto damage_rect_in_target_space =
GetOptionalDamageRectFromQuad(quad);
dest_shared_quad_state->overlay_damage_index =
surface_damage_rect_list_->size();
// This is the only place |zero_damage_texture_draw_quad| is set to
// true because we mark all texture draw quads from exo as
// per_quad_damage even though quad has zero damage rect. This zero
// damage rect is different from the zero surface damage rect we add
// when we check the surface damage from the render pass and this zero
// damage rect will have an |overlay_damage_index| assigned to it.
AddSurfaceDamageToDamageList(damage_rect_in_target_space.value(),
target_transform,
new_dest_root_target_clip_rect,
dest_pass->transform_to_root_target,
/*resolved_frame=*/nullptr,
/*zero_damage_texture_draw_quad=*/true);
} else if (quad == quad_with_overlay_damage_index) {
dest_shared_quad_state->overlay_damage_index = overlay_damage_index;
}
last_copied_source_shared_quad_state = quad->shared_quad_state;
}
DrawQuad* dest_quad = nullptr;
if (const auto* pass_quad =
quad->DynamicCast<CompositorRenderPassDrawQuad>()) {
CompositorRenderPassId original_pass_id = pass_quad->render_pass_id;
AggregatedRenderPassId remapped_pass_id =
resolved_frame.GetRenderPassDataById(original_pass_id)
.remapped_id();
dest_quad = dest_pass->CopyFromAndAppendRenderPassDrawQuad(
pass_quad, remapped_pass_id);
if (needs_surface_damage_rect_list_ &&
resolved_pass.aggregation().will_draw) {
AddRenderPassFilterDamageToDamageList(
resolved_frame, pass_quad, target_transform,
new_dest_root_target_clip_rect,
dest_pass->transform_to_root_target);
}
} else if (const auto* texture_quad =
quad->DynamicCast<TextureDrawQuad>()) {
if (texture_quad->secure_output_only &&
(!output_is_secure_ ||
resolved_pass.aggregation().in_copy_request_pass)) {
// If TextureDrawQuad requires secure output and the output is not
// secure then replace it with solid black.
auto* solid_color_quad =
dest_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>();
solid_color_quad->SetNew(dest_pass->shared_quad_state_list.back(),
quad->rect, quad->visible_rect,
SkColors::kBlack, false);
} else {
dest_quad = dest_pass->CopyFromAndAppendDrawQuad(quad);
if (override_filter_quality.has_value()) {
static_cast<TextureDrawQuad*>(dest_quad)->nearest_neighbor =
override_filter_quality == cc::PaintFlags::FilterQuality::kNone;
}
if (override_dynamic_range_limit.has_value()) {
static_cast<TextureDrawQuad*>(dest_quad)->dynamic_range_limit =
override_dynamic_range_limit.value();
}
}
} else {
dest_quad = dest_pass->CopyFromAndAppendDrawQuad(quad);
}
if (dest_quad) {
dest_quad->resource_id = quad_data.remapped_resource_id;
}
}
}
}
void SurfaceAggregator::CopyPasses(ResolvedFrameData& resolved_frame) {
Surface* surface = resolved_frame.surface();
// The root surface is allowed to have copy output requests, so grab them
// off its render passes. This map contains a set of CopyOutputRequests
// keyed by each RenderPass id.
Surface::CopyRequestsMap copy_requests;
if (take_copy_requests_)
surface->TakeCopyOutputRequests(©_requests);
if (!resolved_frame.is_valid()) {
return;
}
const gfx::Transform surface_transform =
IsRootSurface(surface) ? root_surface_transform_ : gfx::Transform();
auto& root_resolved_pass = resolved_frame.GetRootRenderPassData();
gfx::Rect root_output_rect =
cc::MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
surface_transform, root_resolved_pass.render_pass().output_rect);
const auto& frame_metadata = resolved_frame.GetMetadata();
if (frame_metadata.delegated_ink_metadata) {
// Copy delegated ink metadata from the compositor frame metadata. This
// prevents the delegated ink trail from flickering if a compositor frame
// is not generated due to a delayed main frame.
TransformAndStoreDelegatedInkMetadata(
root_resolved_pass.render_pass().transform_to_root_target *
surface_transform,
frame_metadata.delegated_ink_metadata.get(),
resolved_frame.GetRootRenderPassData().remapped_id());
}
bool apply_surface_transform_to_root_pass = true;
for (auto& resolved_pass : resolved_frame.GetResolvedPasses()) {
const auto& source = resolved_pass.render_pass();
size_t sqs_size = source.shared_quad_state_list.size();
size_t dq_size = source.quad_list.size();
auto copy_pass = std::make_unique<AggregatedRenderPass>(sqs_size, dq_size);
MoveMatchingRequests(source.id, ©_requests, ©_pass->copy_requests);
// We add an additional render pass for the transform if the root render
// pass has any copy requests.
apply_surface_transform_to_root_pass =
resolved_pass.is_root() &&
(copy_pass->copy_requests.empty() || surface_transform.IsIdentity());
gfx::Rect output_rect = source.output_rect;
gfx::Transform transform_to_root_target = source.transform_to_root_target;
if (apply_surface_transform_to_root_pass) {
// If we don't need an additional render pass to apply the surface
// transform, adjust the root pass's rects to account for it.
output_rect = root_output_rect;
} else {
// For the non-root render passes, the transform to root target needs to
// be adjusted to include the root surface transform. This is also true if
// we will be adding another render pass for the surface transform, in
// which this will no longer be the root.
transform_to_root_target =
surface_transform * source.transform_to_root_target;
}
copy_pass->SetAll(
resolved_pass.remapped_id(), output_rect, output_rect,
transform_to_root_target, source.filters, source.backdrop_filters,
source.backdrop_filter_bounds, root_content_color_usage_,
source.has_transparent_background, source.cache_render_pass,
resolved_pass.aggregation().has_damage, source.generate_mipmap);
UpdatePersistentPassDataMergeState(resolved_pass, copy_pass.get(),
/*is_merged_pass=*/false);
if (needs_surface_damage_rect_list_ && resolved_pass.is_root()) {
AddSurfaceDamageToDamageList(
/*default_damage_rect=*/gfx::Rect(),
/*parent_target_transform=*/surface_transform,
/*dest_root_target_clip_rect=*/{},
copy_pass->transform_to_root_target, &resolved_frame,
/*zero_damage_texture_draw_quad=*/false);
}
CopyQuadsToPass(resolved_frame, resolved_pass, copy_pass.get(),
resolved_frame.device_scale_factor(),
apply_surface_transform_to_root_pass ? surface_transform
: gfx::Transform(),
{}, /*dest_root_target_clip_rect*/ root_output_rect,
MaskFilterInfoExt(), std::nullopt, std::nullopt);
SetRenderPassDamageRect(copy_pass.get(), resolved_pass);
dest_pass_list_->push_back(std::move(copy_pass));
}
dest_pass_list_->back()->video_capture_enabled =
surface->IsVideoCaptureOnFromClient();
if (!apply_surface_transform_to_root_pass)
AddDisplayTransformPass();
}
void SurfaceAggregator::SetRenderPassDamageRect(
AggregatedRenderPass* copy_pass,
ResolvedPassData& resolved_pass) {
// If the render pass has copy requests, or should be cached, or has
// moving-pixel filters, or in a moving-pixel surface, we should damage the
// whole output rect so that we always drawn the full content. Otherwise, we
// might have incompleted copy request, or cached patially drawn render
// pass.
if (!RenderPassNeedsFullDamage(resolved_pass)) {
gfx::Transform inverse_transform;
if (copy_pass->transform_to_root_target.GetInverse(&inverse_transform)) {
gfx::Rect damage_rect_in_render_pass_space =
cc::MathUtil::ProjectEnclosingClippedRect(inverse_transform,
root_damage_rect_);
copy_pass->damage_rect.Intersect(damage_rect_in_render_pass_space);
if (metrics_subsampler_.ShouldSample(0.001)) {
gfx::Rect root_clip_in_render_pass_space =
cc::MathUtil::ProjectEnclosingClippedRect(
inverse_transform,
resolved_pass.previous_persistent_data().parent_clip_rect);
// The 'root_clip_in_render_pass_space' will now be a subrect of the
// 'output rect'.
root_clip_in_render_pass_space.Intersect(copy_pass->output_rect);
bool is_output_rect =
root_clip_in_render_pass_space == copy_pass->output_rect;
UMA_HISTOGRAM_ENUMERATION(
"Compositing.SurfaceAggregator.RenderPassDamageType",
is_output_rect ? RenderPassDamage::kOutputRect
: RenderPassDamage::kRootClipped);
const auto render_pass_overdamage =
copy_pass->output_rect.size().Area64() -
root_clip_in_render_pass_space.size().Area64();
UMA_HISTOGRAM_COUNTS_10M(
"Compositing.SurfaceAggregator.ExcessPixelsClipped",
render_pass_overdamage);
}
}
// For unembeded render passes, their damages were not added to the
// root render pass. Add back the original damage from cc so it can be
// skipped later when there is no internal damage.
static const bool can_skip_render_pass = base::FeatureList::IsEnabled(
features::kAllowUndamagedNonrootRenderPassToSkip);
if (resolved_pass.IsUnembedded() && can_skip_render_pass) {
copy_pass->damage_rect.Union(resolved_pass.aggregation().added_damage);
}
} else if (metrics_subsampler_.ShouldSample(0.001)) {
UMA_HISTOGRAM_ENUMERATION(
"Compositing.SurfaceAggregator.RenderPassDamageType",
RenderPassDamage::kForceFullOutputRect);
}
}
void SurfaceAggregator::ProcessAddedAndRemovedSurfaces() {
// Delete resolved frame data that wasn't used this aggregation. This releases
// resources associated with those resolved frames.
std::erase_if(resolved_frames_, [](auto& entry) {
return !entry.second.WasUsedInAggregation();
});
}
gfx::Rect SurfaceAggregator::PrewalkRenderPass(
ResolvedFrameData& resolved_frame,
ResolvedPassData& resolved_pass,
const gfx::Rect& damage_from_parent,
const gfx::Transform& target_to_root_transform,
const ResolvedPassData* parent_pass,
PrewalkResult& result) {
const CompositorRenderPass& render_pass = resolved_pass.render_pass();
if (render_pass.backdrop_filters.HasFilterThatMovesPixels()) {
has_pixel_moving_backdrop_filter_ = true;
}
if (parent_pass && parent_pass->aggregation().will_draw)
resolved_pass.aggregation().will_draw = true;
// Populate state for about cached render passes and pixel moving filters.
// These attributes apply transitively to all child render passes embedded by
// the CompositorRenderPass with the attribute.
if (render_pass.cache_render_pass ||
(parent_pass && parent_pass->aggregation().in_cached_render_pass)) {
resolved_pass.aggregation().in_cached_render_pass = true;
}
if (render_pass.filters.HasFilterThatMovesPixels() ||
(parent_pass && parent_pass->aggregation().in_pixel_moving_filter_pass)) {
resolved_pass.aggregation().in_pixel_moving_filter_pass = true;
stats_->has_pixel_moving_filter = true;
}
const FrameDamageType damage_type = resolved_frame.GetFrameDamageType();
if (damage_type == FrameDamageType::kFull) {
resolved_pass.aggregation().has_damage = true;
} else if (damage_type == FrameDamageType::kFrame &&
render_pass.has_damage_from_contributing_content) {
resolved_pass.aggregation().has_damage = true;
}
// The damage on the root render pass of the surface comes from damage
// accumulated from all quads in the surface, and needs to be expanded by any
// pixel-moving backdrop filter in the render pass if intersecting. Transform
// this damage into the local space of the render pass for this purpose.
// TODO(kylechar): If this render pass isn't reachable from the surfaces root
// render pass then surface damage can't be transformed into this render pass
// coordinate space. We should use the actual damage for the render pass,
// which isn't included in the CompositorFrame right now.
gfx::Rect surface_root_rp_damage = resolved_frame.GetSurfaceDamage();
if (!surface_root_rp_damage.IsEmpty()) {
gfx::Transform root_to_target_transform;
if (target_to_root_transform.GetInverse(&root_to_target_transform)) {
surface_root_rp_damage = cc::MathUtil::ProjectEnclosingClippedRect(
root_to_target_transform, surface_root_rp_damage);
}
}
gfx::Rect damage_rect;
// Iterate through the quad list back-to-front and accumulate damage from
// all quads (only SurfaceDrawQuads and RenderPassDrawQuads can have damage
// at this point). |damage_rect| has damage from all quads below the current
// iterated quad, and can be used to determine if there's any intersection
// with the current quad when needed.
for (const DrawQuad* quad : base::Reversed(render_pass.quad_list)) {
gfx::Rect quad_damage_rect;
gfx::Rect quad_target_space_damage_rect;
if (quad->material == DrawQuad::Material::kSurfaceContent) {
const auto* surface_quad = SurfaceDrawQuad::MaterialCast(quad);
ResolvedFrameData* child_resolved_frame =
GetResolvedFrame(surface_quad->surface_range);
// If the primary surface is not available then we assume the damage is
// the full size of the SurfaceDrawQuad because we might need to introduce
// gutter.
if (!child_resolved_frame || child_resolved_frame->surface_id() !=
surface_quad->surface_range.end()) {
quad_damage_rect = quad->rect;
}
if (child_resolved_frame) {
float x_scale = SK_Scalar1;
float y_scale = SK_Scalar1;
if (surface_quad->stretch_content_to_fill_bounds) {
const gfx::Size& child_size = child_resolved_frame->size_in_pixels();
if (!child_size.IsEmpty()) {
x_scale = static_cast<float>(surface_quad->rect.width()) /
child_size.width();
y_scale = static_cast<float>(surface_quad->rect.height()) /
child_size.height();
}
} else {
// If not stretching to fit bounds then scale to adjust to device
// scale factor differences between child and parent surface. This
// scale factor is later applied to quads in the aggregated frame.
x_scale = y_scale = resolved_frame.device_scale_factor() /
child_resolved_frame->device_scale_factor();
}
// If the surface quad is to be merged potentially, the current
// effective accumulated damage needs to be taken into account. This
// includes the damage from quads under the surface quad, i.e.
// |damage_rect|, |surface_root_rp_damage|, which can contain damage
// contributed by quads under the surface quad in the previous stage
// (cc), and |damage_from_parent|. The damage is first transformed into
// the local space of the surface quad and then passed to the embedding
// surface. The condition for deciding if the surface quad will merge is
// loose here, so for those quads passed this condition but eventually
// don't merge, there is over-contribution of the damage passed from
// parent, but this shouldn't affect correctness.
gfx::Rect accumulated_damage_in_child_space;
if (CanPotentiallyMergePass(*surface_quad)) {
accumulated_damage_in_child_space.Union(damage_rect);
accumulated_damage_in_child_space.Union(damage_from_parent);
accumulated_damage_in_child_space.Union(surface_root_rp_damage);
if (!accumulated_damage_in_child_space.IsEmpty()) {
gfx::Transform inverse =
quad->shared_quad_state->quad_to_target_transform
.GetCheckedInverse();
inverse.PostScale(SK_Scalar1 / x_scale, SK_Scalar1 / y_scale);
accumulated_damage_in_child_space =
cc::MathUtil::ProjectEnclosingClippedRect(
inverse, accumulated_damage_in_child_space);
}
}
gfx::Rect child_rect =
PrewalkSurface(*child_resolved_frame, &resolved_pass,
accumulated_damage_in_child_space, result);
child_rect = gfx::ScaleToEnclosingRect(child_rect, x_scale, y_scale);
quad_damage_rect.Union(child_rect);
}
// Only check for root render pass on the root surface.
if (parent_pass == nullptr && resolved_pass.is_root() &&
!result.page_fullscreen_mode) {
gfx::Rect surface_quad_on_target_space = ClippedQuadRectangle(quad);
// Often time the surface_quad_on_target_space is not exactly the same
// as the output_rect after the math operations, although they are meant
// to be the same. Set the delta tolerance to 8 pixels.
if (surface_quad_on_target_space.ApproximatelyEqual(
render_pass.output_rect, /*tolerance=*/8)) {
result.page_fullscreen_mode = true;
}
}
#if BUILDFLAG(IS_WIN)
// Force the root passes of surfaces referenced by the root pass of the
// root surface to be embedded instead of merged. This supports the
// feature |kDelegatedCompositingLimitToUi|.
if (prevent_merging_surfaces_to_root_pass_ && child_resolved_frame &&
resolved_pass.is_root() && IsRootSurface(resolved_frame.surface())) {
child_resolved_frame->GetRootRenderPassData()
.aggregation()
.prevent_merge = true;
}
#else
// Ignore -Wunused-private-field warning.
(void)prevent_merging_surfaces_to_root_pass_;
#endif
} else if (auto* render_pass_quad =
quad->DynamicCast<CompositorRenderPassDrawQuad>()) {
CompositorRenderPassId child_pass_id = render_pass_quad->render_pass_id;
ResolvedPassData& child_resolved_pass =
resolved_frame.GetRenderPassDataById(child_pass_id);
const CompositorRenderPass& child_render_pass =
child_resolved_pass.render_pass();
gfx::Rect rect_in_target_space = cc::MathUtil::MapEnclosingClippedRect(
quad->shared_quad_state->quad_to_target_transform, quad->rect);
// |damage_rect|, |damage_from_parent| and |surface_root_rp_damage|
// either are or can possible contain damage from under the quad, so if
// they intersect the quad render pass output rect, we have to invalidate
// the |intersects_damage_under| flag. Note the intersection test can be
// done against backdrop filter bounds as an improvement.
bool intersects_current_damage =
rect_in_target_space.Intersects(damage_rect);
bool intersects_damage_from_parent =
rect_in_target_space.Intersects(damage_from_parent);
// The |intersects_damage_under| flag hints if the current quad intersects
// any damage from any quads below in the same surface. If the flag is
// false, it means the intersecting damage is from quads above it or from
// itself.
bool intersects_damage_from_surface =
rect_in_target_space.Intersects(surface_root_rp_damage);
if (intersects_current_damage || intersects_damage_from_parent ||
intersects_damage_from_surface) {
render_pass_quad->intersects_damage_under = true;
if (child_render_pass.backdrop_filters.HasFilterThatMovesPixels()) {
// The damage from under the quad intersects quad render pass output
// rect and it has to be expanded because of the pixel-moving
// backdrop filters. We expand the |damage_rect| to include quad
// render pass output rect (which can be optimized to be backdrop
// filter bounds). |damage_from_parent| and |surface_root_rp_damage|
// only have to be included when they also have intersection with the
// quad.
damage_rect.Union(rect_in_target_space);
if (intersects_damage_from_parent) {
damage_rect.Union(damage_from_parent);
}
if (intersects_damage_from_surface) {
damage_rect.Union(surface_root_rp_damage);
}
}
}
// For the pixel-moving backdrop filters, all effects are limited to the
// size of the RenderPassDrawQuad rect. Therefore when we find the damage
// under the quad intersects quad render pass output rect, we extend the
// damage rect to include the rpdq->rect.
// TODO(crbug.com/40244221): Work out how to correctly compute damage when
// offset backdrop filters may be involved.
// For the pixel-moving foreground filters, all effects can be expanded
// outside the RenderPassDrawQuad rect based on filter pixel movement.
// Therefore, we have to check if the expanded rpdq->rect intersects the
// damage under it. Then we extend the damage rect to include the expanded
// rpdq->rect.
// Expand the damage to cover entire |output_rect| if the |render_pass|
// has pixel-moving foreground filter.
if (child_render_pass.filters.HasFilterThatMovesPixels()) {
gfx::Rect expanded_rect_in_target_space =
GetTargetExpandedRectForPixelMovingFilters(
*render_pass_quad, child_render_pass.filters);
if (expanded_rect_in_target_space.Intersects(damage_rect) ||
expanded_rect_in_target_space.Intersects(damage_from_parent) ||
expanded_rect_in_target_space.Intersects(surface_root_rp_damage)) {
damage_rect.Union(expanded_rect_in_target_space);
}
}
resolved_pass.aggregation().embedded_passes.insert(&child_resolved_pass);
const gfx::Transform child_to_root_transform =
target_to_root_transform *
quad->shared_quad_state->quad_to_target_transform;
quad_damage_rect =
PrewalkRenderPass(resolved_frame, child_resolved_pass, gfx::Rect(),
child_to_root_transform, &resolved_pass, result);
} else {
// If this the next frame in sequence from last aggregation then per quad
// damage_rects are valid so add them here. If not, either this is the
// same frame as last aggregation and there is no damage OR there is
// already full damage for the surface.
if (damage_type == FrameDamageType::kFrame) {
if (auto& per_quad_damage_rect = GetOptionalDamageRectFromQuad(quad)) {
// The DrawQuad `per_quad_damage_rect` is already in the render pass
// coordinate space instead of quad rect coordinate space.
quad_target_space_damage_rect = per_quad_damage_rect.value();
}
}
}
// Clip the quad damage to the quad visible before converting back to
// render pass coordinate space. Expanded damage outside the quad rect for
// filters are added to |damage_rect| directly so this only clips damage
// from drawing the quad itself.
quad_damage_rect.Intersect(quad->visible_rect);
if (!quad_damage_rect.IsEmpty()) {
// Convert the quad damage rect into its target space and clip it if
// needed. Ignore tiny errors to avoid artificially inflating the
// damage due to floating point math.
constexpr float kEpsilon = 0.001f;
quad_target_space_damage_rect =
cc::MathUtil::MapEnclosingClippedRectIgnoringError(
quad->shared_quad_state->quad_to_target_transform,
quad_damage_rect, kEpsilon);
}
if (!quad_target_space_damage_rect.IsEmpty()) {
if (quad->shared_quad_state->clip_rect) {
quad_target_space_damage_rect.Intersect(
*quad->shared_quad_state->clip_rect);
}
damage_rect.Union(quad_target_space_damage_rect);
}
}
if (!damage_rect.IsEmpty()) {
// There is extra damage for this render pass. This is damage that the
// client that submitted this render pass didn't know about and isn't
// included in the surface damage or `has_damage_from_contributing_content`.
resolved_pass.aggregation().has_damage = true;
if (render_pass.filters.HasFilterThatMovesPixels()) {
// Expand the damage to cover entire |output_rect| if the |render_pass|
// has pixel-moving foreground filter.
damage_rect.Union(render_pass.output_rect);
}
// The added damage from quads in the render pass is transformed back into
// the render pass coordinate space without clipping, so it can extend
// beyond the edge of the current render pass. Coordinates outside the
// output_rect are invalid in this render passes coordinate space but they
// may be valid coordinates in the embedder coordinate space, causing
// unnecessary damage expansion.
damage_rect.Intersect(render_pass.output_rect);
resolved_pass.aggregation().added_damage.Union(damage_rect);
}
return damage_rect;
}
bool SurfaceAggregator::CheckFrameSinksChanged(const SurfaceId& surface_id) {
contained_surfaces_.insert(surface_id);
LocalSurfaceId& local_surface_id =
contained_frame_sinks_[surface_id.frame_sink_id()];
bool frame_sinks_changed =
(!previous_contained_frame_sinks_.contains(surface_id.frame_sink_id()));
local_surface_id = std::max(surface_id.local_surface_id(), local_surface_id);
return frame_sinks_changed;
}
gfx::Rect SurfaceAggregator::PrewalkSurface(ResolvedFrameData& resolved_frame,
ResolvedPassData* parent_pass,
const gfx::Rect& damage_from_parent,
PrewalkResult& result) {
Surface* surface = resolved_frame.surface();
DCHECK(surface->HasActiveFrame());
if (referenced_surfaces_.count(surface->surface_id()))
return gfx::Rect();
result.frame_sinks_changed |=
CheckFrameSinksChanged(resolved_frame.surface_id());
if (!resolved_frame.is_valid())
return gfx::Rect();
DebugLogSurface(surface, resolved_frame.WillDraw());
auto& root_resolved_pass = resolved_frame.GetRootRenderPassData();
if (parent_pass) {
parent_pass->aggregation().embedded_passes.insert(&root_resolved_pass);
}
gfx::Rect damage_rect = resolved_frame.GetSurfaceDamage();
// Avoid infinite recursion by adding current surface to
// |referenced_surfaces_|.
referenced_surfaces_.insert(surface->surface_id());
for (auto& resolved_pass : resolved_frame.GetResolvedPasses()) {
// Prewalk any render passes that aren't reachable from the root pass. The
// damage produced isn't correct since there is no transform between damage
// in the root render passes coordinate space and the unembedded render
// pass, but other attributes related to the embedding hierarchy are still
// important to propagate.
if (resolved_pass.IsUnembedded()) {
stats_->has_unembedded_pass = true;
resolved_pass.aggregation().added_damage =
PrewalkRenderPass(resolved_frame, resolved_pass,
/*damage_from_parent=*/gfx::Rect(),
/*target_to_root_transform=*/gfx::Transform(),
/*parent_pass=*/nullptr, result);
}
}
damage_rect.Union(PrewalkRenderPass(resolved_frame, root_resolved_pass,
damage_from_parent, gfx::Transform(),
parent_pass, result));
if (!damage_rect.IsEmpty()) {
auto damage_rect_surface_space = damage_rect;
if (IsRootSurface(surface)) {
// The damage reported to the surface is in pre-display transform space
// since it is used by clients which are not aware of the display
// transform.
damage_rect = cc::MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
root_surface_transform_, damage_rect);
gfx::Transform inverse = root_surface_transform_.GetCheckedInverse();
damage_rect_surface_space =
cc::MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(inverse,
damage_rect);
}
// The following call can cause one or more copy requests to be added to the
// Surface. Therefore, no code before this point should have assumed
// anything about the presence or absence of copy requests after this point.
surface->NotifyAggregatedDamage(damage_rect_surface_space,
expected_display_time_);
}
// If any CopyOutputRequests were made at FrameSink level, make sure we grab
// them too.
surface->TakeCopyOutputRequestsFromClient();
if (root_resolved_pass.aggregation().will_draw)
surface->OnWillBeDrawn();
const auto& frame_metadata = resolved_frame.GetMetadata();
for (const SurfaceRange& surface_range : frame_metadata.referenced_surfaces) {
damage_ranges_[surface_range.end().frame_sink_id()].push_back(
surface_range);
if (surface_range.HasDifferentFrameSinkIds()) {
damage_ranges_[surface_range.start()->frame_sink_id()].push_back(
surface_range);
}
}
for (const SurfaceId& surface_id : surface->active_referenced_surfaces()) {
// Referenced surfaces that haven't been prewalked yet are not embedded so
// don't contribute any pixels to the display. They will only be drawn if
// necessary to fulfill CopyOutputRequests.
if (!contained_surfaces_.count(surface_id)) {
result.undrawn_surfaces.insert(surface_id);
ResolvedFrameData* undrawn_surface = GetResolvedFrame(surface_id);
if (undrawn_surface) {
PrewalkSurface(*undrawn_surface, /*parent_pass=*/nullptr, gfx::Rect(),
result);
}
}
}
for (auto& resolved_pass : resolved_frame.GetResolvedPasses()) {
auto& render_pass = resolved_pass.render_pass();
// Checking for copy requests need to be done after the prewalk because
// copy requests can get added after damage is computed.
if (!render_pass.copy_requests.empty()) {
has_copy_requests_ = true;
MarkAndPropagateCopyRequestPasses(resolved_pass);
}
}
referenced_surfaces_.erase(surface->surface_id());
result.content_color_usage =
std::max(result.content_color_usage, frame_metadata.content_color_usage);
return damage_rect;
}
void SurfaceAggregator::CopyUndrawnSurfaces(PrewalkResult* prewalk_result) {
// undrawn_surfaces are Surfaces that were identified by prewalk as being
// referenced by a drawn Surface, but aren't contained in a SurfaceDrawQuad.
// They need to be iterated over to ensure that any copy requests on them
// (or on Surfaces they reference) are executed.
std::vector<SurfaceId> surfaces_to_copy(
prewalk_result->undrawn_surfaces.begin(),
prewalk_result->undrawn_surfaces.end());
DCHECK(referenced_surfaces_.empty());
for (size_t i = 0; i < surfaces_to_copy.size(); i++) {
SurfaceId surface_id = surfaces_to_copy[i];
ResolvedFrameData* resolved_frame = GetResolvedFrame(surface_id);
if (!resolved_frame)
continue;
Surface* surface = resolved_frame->surface();
if (!surface->HasCopyOutputRequests()) {
// Children are not necessarily included in undrawn_surfaces (because
// they weren't referenced directly from a drawn surface), but may have
// copy requests, so make sure to check them as well.
for (const SurfaceId& child_id : surface->active_referenced_surfaces()) {
// Don't iterate over the child Surface if it was already listed as a
// child of a different Surface, or in the case where there's infinite
// recursion.
if (!prewalk_result->undrawn_surfaces.count(child_id)) {
surfaces_to_copy.push_back(child_id);
prewalk_result->undrawn_surfaces.insert(child_id);
}
}
} else {
prewalk_result->undrawn_surfaces.erase(surface_id);
referenced_surfaces_.insert(surface_id);
CopyPasses(*resolved_frame);
referenced_surfaces_.erase(surface_id);
}
}
}
void SurfaceAggregator::MarkAndPropagateCopyRequestPasses(
ResolvedPassData& resolved_pass) {
if (resolved_pass.aggregation().in_copy_request_pass)
return;
resolved_pass.aggregation().in_copy_request_pass = true;
for (ResolvedPassData* child_pass :
resolved_pass.aggregation().embedded_passes) {
MarkAndPropagateCopyRequestPasses(*child_pass);
}
}
AggregatedFrame SurfaceAggregator::Aggregate(
const SurfaceId& surface_id,
base::TimeTicks expected_display_time,
gfx::OverlayTransform display_transform,
const gfx::Rect& target_damage,
int64_t display_trace_id) {
DCHECK(!expected_display_time.is_null());
DCHECK(contained_surfaces_.empty());
DCHECK(!is_inside_aggregate_);
is_inside_aggregate_ = true;
root_surface_id_ = surface_id;
// Start recording new stats for this aggregation.
stats_.emplace();
base::ElapsedTimer prewalk_timer;
ResolvedFrameData* resolved_frame = GetResolvedFrame(surface_id);
if (!resolved_frame || !resolved_frame->is_valid()) {
ResetAfterAggregate();
return {};
}
display_trace_id_ = display_trace_id;
expected_display_time_ = expected_display_time;
const CompositorFrameMetadata& frame_metadata = resolved_frame->GetMetadata();
flow_ids_for_resolved_frames_.insert(frame_metadata.begin_frame_ack.trace_id);
TRACE_EVENT_BEGIN(
"viz,benchmark,graphics.pipeline", "Graphics.Pipeline",
perfetto::Flow::Global(display_trace_id_),
[this](perfetto::EventContext ctx) {
base::TaskAnnotator::EmitTaskTimingDetails(ctx);
auto* event = ctx.event<perfetto::protos::pbzero::ChromeTrackEvent>();
auto* data = event->set_chrome_graphics_pipeline();
data->set_step(perfetto::protos::pbzero::ChromeGraphicsPipeline::
StepName::STEP_SURFACE_AGGREGATION);
data->set_display_trace_id(display_trace_id_);
});
// We need to terminate the above trace event separately so that the callees
// of `SurfaceAggregator::Aggregate` can appropriately populate
// `flow_ids_for_resolved_frames_`, which we need so that we can
// terminate the flows for those frames at this trace event.
absl::Cleanup surface_aggregation_trace_event_scoped_exit = [this] {
TRACE_EVENT_END(
"viz,benchmark,graphics.pipeline", [this](perfetto::EventContext ctx) {
auto* chrome_graphics_pipeline =
ctx.event<perfetto::protos::pbzero::ChromeTrackEvent>()
->set_chrome_graphics_pipeline();
// Two separate loops are necessary due to Perfetto's ProtoZero
// semantics: if we start adding values to a repeated field, we should
// add all values that need to be added, before moving on to updating
// a different field.
for (int64_t id : flow_ids_for_resolved_frames_) {
chrome_graphics_pipeline->add_aggregated_surface_frame_trace_ids(
id);
}
for (int64_t id : flow_ids_for_resolved_frames_) {
ctx.event()->add_terminating_flow_ids(id);
}
});
// Clear this separately from `ResetAfterAggregate` since this
// `absl::Cleanup` is run after `ResetAfterAggregate`.
flow_ids_for_resolved_frames_.clear();
};
CheckFrameSinksChanged(resolved_frame->surface_id());
AggregatedFrame frame;
dest_pass_list_ = &frame.render_pass_list;
surface_damage_rect_list_ = &frame.surface_damage_rect_list_;
auto& root_render_pass =
resolved_frame->GetRootRenderPassData().render_pass();
// The root render pass on the root surface can not have backdrop filters.
DCHECK(!root_render_pass.backdrop_filters.HasFilterThatMovesPixels());
const gfx::Size viewport_bounds = resolved_frame->size_in_pixels();
root_surface_transform_ = gfx::OverlayTransformToTransform(
display_transform, gfx::SizeF(viewport_bounds));
// Reset state that couldn't be reset in ResetAfterAggregate().
damage_ranges_.clear();
DCHECK(referenced_surfaces_.empty());
// The root surface root render pass is the start of the embedding tree.
resolved_frame->GetRootRenderPassData().aggregation().will_draw = true;
PrewalkResult prewalk_result;
gfx::Rect prewalk_damage_rect =
PrewalkSurface(*resolved_frame,
/*parent_pass=*/nullptr,
/*damage_from_parent=*/gfx::Rect(), prewalk_result);
stats_->prewalk_time = prewalk_timer.Elapsed();
root_damage_rect_ = prewalk_damage_rect;
// |root_damage_rect_| is used to restrict aggregating quads only if they
// intersect this area.
root_damage_rect_.Union(target_damage);
// Changing color usage will cause the renderer to reshape the output surface,
// therefore the renderer might expand the damage to the whole frame. The
// following makes sure SA will produce all the quads to cover the full frame.
bool color_usage_changed =
root_content_color_usage_ != prewalk_result.content_color_usage;
if (color_usage_changed) {
root_damage_rect_ = cc::MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
root_surface_transform_, gfx::Rect(viewport_bounds));
root_content_color_usage_ = prewalk_result.content_color_usage;
}
if (prewalk_result.frame_sinks_changed)
manager_->AggregatedFrameSinksChanged();
frame.has_copy_requests = has_copy_requests_ && take_copy_requests_;
frame.content_color_usage = prewalk_result.content_color_usage;
frame.page_fullscreen_mode = prewalk_result.page_fullscreen_mode;
base::ElapsedTimer copy_timer;
CopyUndrawnSurfaces(&prewalk_result);
referenced_surfaces_.insert(surface_id);
CopyPasses(*resolved_frame);
referenced_surfaces_.erase(surface_id);
DCHECK(referenced_surfaces_.empty());
stats_->copy_time = copy_timer.Elapsed();
RecordStatHistograms();
if (dest_pass_list_->empty()) {
ResetAfterAggregate();
return {};
}
// The root render pass damage might have been expanded by target_damage (the
// area that might need to be recomposited on the target surface). We restrict
// the damage_rect of the root render pass to the one caused by the source
// surfaces, except when drawing delegated ink trails.
// The damage on the root render pass should not include the expanded area
// since Renderer and OverlayProcessor expect the non expanded damage. The
// only exception is when delegated ink trails are being drawn, in which case
// the root render pass needs to contain the expanded area, as |target_damage|
// also reflects the delegated ink trail damage rect.
auto* last_pass = dest_pass_list_->back().get();
if (!color_usage_changed && !last_frame_had_delegated_ink_ &&
!RenderPassNeedsFullDamage(resolved_frame->GetRootRenderPassData())) {
last_pass->damage_rect.Intersect(prewalk_damage_rect);
}
AddRootReadbackPass();
ProcessAddedAndRemovedSurfaces();
contained_surfaces_.swap(previous_contained_surfaces_);
contained_frame_sinks_.swap(previous_contained_frame_sinks_);
ResetAfterAggregate();
for (auto& contained_surface_id : previous_contained_surfaces_) {
auto* surface = manager_->GetSurfaceForId(contained_surface_id);
if (surface) {
surface->allocation_group()->TakeAggregatedLatencyInfoUpTo(
surface, &frame.latency_info);
}
if (!ui::LatencyInfo::Verify(frame.latency_info,
"SurfaceAggregator::Aggregate")) {
break;
}
}
if (delegated_ink_metadata_) {
// If the aggregated frame is getting a metadata that matches the one it
// received last frame, increment the counter. Once the limit of frames
// with the same metadata `kMaxFramesWithIdenticalInkMetadata` is
// reached, the metadata is no longer attached. This prevents the
// delegated ink trail from persisting on the screen if no new
// compositor frames are received by Viz. The purpose of this hysteresis
// is to prevent flickering in the case where the compositor frame is
// delayed due to a late main frame in the renderer process.
if (previous_ink_metadata_time_ == delegated_ink_metadata_->timestamp()) {
identical_ink_metadata_count_++;
} else {
identical_ink_metadata_count_ = 0;
}
if (identical_ink_metadata_count_ < kMaxFramesWithIdenticalInkMetadata) {
previous_ink_metadata_time_ = delegated_ink_metadata_->timestamp();
frame.delegated_ink_metadata = std::move(delegated_ink_metadata_);
last_frame_had_delegated_ink_ = true;
} else {
last_frame_had_delegated_ink_ = false;
}
} else {
last_frame_had_delegated_ink_ = false;
}
if (frame_annotator_)
frame_annotator_->AnnotateAggregatedFrame(&frame);
return frame;
}
void SurfaceAggregator::RecordStatHistograms() {
UMA_HISTOGRAM_CUSTOM_MICROSECONDS_TIMES(
"Compositing.SurfaceAggregator.PrewalkUs", stats_->prewalk_time,
kHistogramMinTime, kHistogramMaxTime, kHistogramTimeBuckets);
UMA_HISTOGRAM_CUSTOM_MICROSECONDS_TIMES(
"Compositing.SurfaceAggregator.CopyUs", stats_->copy_time,
kHistogramMinTime, kHistogramMaxTime, kHistogramTimeBuckets);
UMA_HISTOGRAM_BOOLEAN("Compositing.SurfaceAggregator.HasCopyRequestsPerFrame",
has_copy_requests_);
UMA_HISTOGRAM_BOOLEAN(
"Compositing.SurfaceAggregator.HasPixelMovingFiltersPerFrame",
stats_->has_pixel_moving_filter);
UMA_HISTOGRAM_BOOLEAN(
"Compositing.SurfaceAggregator.HasPixelMovingBackdropFiltersPerFrame",
has_pixel_moving_backdrop_filter_);
UMA_HISTOGRAM_BOOLEAN(
"Compositing.SurfaceAggregator.HasUnembeddedRenderPassesPerFrame",
stats_->has_unembedded_pass);
stats_.reset();
}
void SurfaceAggregator::ResetAfterAggregate() {
DCHECK(is_inside_aggregate_);
is_inside_aggregate_ = false;
dest_pass_list_ = nullptr;
surface_damage_rect_list_ = nullptr;
current_zero_damage_rect_is_not_recorded_ = false;
expected_display_time_ = base::TimeTicks();
display_trace_id_ = -1;
has_pixel_moving_backdrop_filter_ = false;
has_copy_requests_ = false;
resolved_surface_ranges_.clear();
contained_surfaces_.clear();
contained_frame_sinks_.clear();
// Reset resolved frame data from this aggregation.
for (auto& [surface_id, resolved_frame] : resolved_frames_)
resolved_frame.ResetAfterAggregation();
}
void SurfaceAggregator::SetFullDamageForSurface(const SurfaceId& surface_id) {
auto iter = resolved_frames_.find(surface_id);
if (iter != resolved_frames_.end())
iter->second.SetFullDamageForNextAggregation();
}
void SurfaceAggregator::SetDisplayColorSpaces(
const gfx::DisplayColorSpaces& display_color_spaces) {
display_color_spaces_ = display_color_spaces;
}
void SurfaceAggregator::SetMaxRenderTargetSize(int max_size) {
DCHECK_GE(max_size, 0);
max_render_target_size_ = max_size;
}
bool SurfaceAggregator::CheckForDisplayDamage(const SurfaceId& surface_id) {
auto it = damage_ranges_.find(surface_id.frame_sink_id());
if (it == damage_ranges_.end()) {
return false;
}
for (const SurfaceRange& surface_range : it->second) {
if (surface_range.IsInRangeInclusive(surface_id)) {
return true;
}
}
return false;
}
bool SurfaceAggregator::ForceReleaseResourcesIfNeeded(
const SurfaceId& surface_id) {
auto iter = resolved_frames_.find(surface_id);
if (iter != resolved_frames_.end()) {
auto& resolved_frame = iter->second;
DCHECK(resolved_frame.surface()->HasActiveFrame());
if (resolved_frame.surface()->GetActiveFrame().resource_list.empty()) {
// When a client submits a CompositorFrame without resources it's
// typically done to force return of existing resources to the client.
resolved_frame.ForceReleaseResource();
}
return true;
}
return false;
}
bool SurfaceAggregator::HasFrameAnnotator() const {
return !!frame_annotator_;
}
void SurfaceAggregator::SetFrameAnnotator(
std::unique_ptr<FrameAnnotator> frame_annotator) {
DCHECK(!frame_annotator_);
frame_annotator_ = std::move(frame_annotator);
}
void SurfaceAggregator::DestroyFrameAnnotator() {
DCHECK(frame_annotator_);
frame_annotator_.reset();
}
bool SurfaceAggregator::IsRootSurface(const Surface* surface) const {
return surface->surface_id() == root_surface_id_;
}
// Transform the point and presentation area of the metadata to be in the root
// target space. They need to be in the root target space because they will
// eventually be drawn directly onto the buffer just before being swapped onto
// the screen, so root target space is required so that they are positioned
// correctly. After transforming, they are stored in the
// |delegated_ink_metadata_| member in order to be placed on the final
// aggregated frame, after which the member is then cleared.
void SurfaceAggregator::TransformAndStoreDelegatedInkMetadata(
const gfx::Transform& parent_quad_to_root_target_transform,
const gfx::DelegatedInkMetadata* metadata,
const AggregatedRenderPassId render_pass_with_delegated_ink) {
if (delegated_ink_metadata_) {
// This member could already be populated in two scenarios:
// 1. The delegated ink metadata was committed to a frame's metadata that
// wasn't ultimately used to produce a frame, but is now being used.
// 2. There are two or more ink strokes requesting a delegated ink trail
// simultaneously.
// In both cases, we want to default to using a "last write wins" strategy
// to determine the metadata to put on the final aggregated frame. This
// avoids potential issues of using stale ink metadata in the first scenario
// by always using the newest one. For the second scenario, it would be a
// very niche use case to have more than one at a time, so the explainer
// specifies using last write wins to decide.
base::TimeTicks stored_time = delegated_ink_metadata_->timestamp();
base::TimeTicks new_time = metadata->timestamp();
if (new_time < stored_time)
return;
}
gfx::PointF point =
parent_quad_to_root_target_transform.MapPoint(metadata->point());
gfx::RectF area = parent_quad_to_root_target_transform.MapRect(
metadata->presentation_area());
delegated_ink_metadata_ = std::make_unique<gfx::DelegatedInkMetadata>(
point, metadata->diameter(), metadata->color(), metadata->timestamp(),
area, metadata->frame_time(), metadata->is_hovering(),
render_pass_with_delegated_ink.GetUnsafeValue());
TRACE_EVENT_INSTANT2(
"viz", "SurfaceAggregator::TransformAndStoreDelegatedInkMetadata",
TRACE_EVENT_SCOPE_THREAD, "original metadata", metadata->ToString(),
"transformed metadata", delegated_ink_metadata_->ToString());
}
void SurfaceAggregator::DebugLogSurface(const Surface* surface,
bool will_draw) {
DBG_LOG("aggregator.surface.log", "D%d - %s, %s draws=%s",
static_cast<int>(referenced_surfaces_.size()),
surface->surface_id().ToString().c_str(),
surface->size_in_pixels().ToString().c_str(),
base::ToString(will_draw).c_str());
}
} // namespace viz
|