1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
// The test buffer data is 52 bytes, wrap position is set to 20 (this is
// arbitrarily chosen). The total buffer size is allocated dynamically based on
// the actual header size. This gives:
// Header of some size, non-wrapping part 20 bytes, wrapping part 32 bytes.
// As input data, a 14 byte array is used and repeatedly written. It's chosen
// not to be an integer factor smaller than the wrapping part. This ensures that
// the wrapped data isn't repeated at the same position.
// Note that desipte the number of wraps (if one or more), the reference output
// data is the same since the offset at each wrap is always the same.
#include "components/webrtc_logging/common/partial_circular_buffer.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include "testing/gtest/include/gtest/gtest.h"
namespace webrtc_logging {
namespace {
const uint32_t kWrapPosition = 20;
const uint8_t kInputData[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
const uint8_t kOutputRefDataWrap[] =
// The 20 bytes in the non-wrapping part.
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6,
// The 32 bytes in wrapping part.
11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
} // namespace
class PartialCircularBufferTest : public testing::Test {
public:
PartialCircularBufferTest() {
PartialCircularBuffer::BufferData test_struct;
buffer_header_size_ =
&test_struct.data[0] - reinterpret_cast<uint8_t*>(&test_struct);
buffer_.reset(
new uint8_t[buffer_header_size_ + sizeof(kOutputRefDataWrap)]);
}
PartialCircularBufferTest(const PartialCircularBufferTest&) = delete;
PartialCircularBufferTest& operator=(const PartialCircularBufferTest&) =
delete;
void InitWriteBuffer(bool append) {
pcb_write_ = std::make_unique<PartialCircularBuffer>(
buffer_.get(), buffer_header_size_ + sizeof(kOutputRefDataWrap),
kWrapPosition, append);
}
void WriteToBuffer(int num) {
for (int i = 0; i < num; ++i)
pcb_write_->Write(kInputData, sizeof(kInputData));
}
void InitReadBuffer() {
pcb_read_ = std::make_unique<PartialCircularBuffer>(
buffer_.get(), buffer_header_size_ + sizeof(kOutputRefDataWrap));
}
protected:
std::unique_ptr<PartialCircularBuffer> pcb_write_;
std::unique_ptr<PartialCircularBuffer> pcb_read_;
std::unique_ptr<uint8_t[]> buffer_;
uint32_t buffer_header_size_;
};
TEST_F(PartialCircularBufferTest, NoWrapBeginningPartOnly) {
InitWriteBuffer(false);
WriteToBuffer(1);
InitReadBuffer();
uint8_t output_data[sizeof(kInputData)] = {};
EXPECT_EQ(sizeof(output_data),
pcb_read_->Read(output_data, sizeof(output_data)));
EXPECT_EQ(0, memcmp(kInputData, output_data, sizeof(kInputData)));
EXPECT_EQ(0u, pcb_read_->Read(output_data, sizeof(output_data)));
}
TEST_F(PartialCircularBufferTest, NoWrapBeginningAndEndParts) {
InitWriteBuffer(false);
WriteToBuffer(2);
InitReadBuffer();
uint8_t output_data[2 * sizeof(kInputData)] = {};
EXPECT_EQ(sizeof(output_data),
pcb_read_->Read(output_data, sizeof(output_data)));
const uint8_t output_ref_data[2 * sizeof(kInputData)] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
EXPECT_EQ(0, memcmp(output_ref_data, output_data, sizeof(output_data)));
EXPECT_EQ(0u, pcb_read_->Read(output_data, sizeof(output_data)));
}
TEST_F(PartialCircularBufferTest, WrapOnce) {
InitWriteBuffer(false);
WriteToBuffer(4);
InitReadBuffer();
uint8_t output_data[sizeof(kOutputRefDataWrap)] = {};
EXPECT_EQ(sizeof(output_data),
pcb_read_->Read(output_data, sizeof(output_data)));
EXPECT_EQ(0, memcmp(kOutputRefDataWrap, output_data, sizeof(output_data)));
EXPECT_EQ(0u, pcb_read_->Read(output_data, sizeof(output_data)));
}
TEST_F(PartialCircularBufferTest, WrapTwice) {
InitWriteBuffer(false);
WriteToBuffer(7);
InitReadBuffer();
uint8_t output_data[sizeof(kOutputRefDataWrap)] = {};
EXPECT_EQ(sizeof(output_data),
pcb_read_->Read(output_data, sizeof(output_data)));
EXPECT_EQ(0, memcmp(kOutputRefDataWrap, output_data, sizeof(output_data)));
EXPECT_EQ(0u, pcb_read_->Read(output_data, sizeof(output_data)));
}
TEST_F(PartialCircularBufferTest, WrapOnceSmallerOutputBuffer) {
InitWriteBuffer(false);
WriteToBuffer(4);
InitReadBuffer();
uint8_t output_data[sizeof(kOutputRefDataWrap)] = {};
const uint32_t size_per_read = 16;
uint32_t read = 0;
for (; read + size_per_read <= sizeof(output_data); read += size_per_read) {
EXPECT_EQ(size_per_read,
pcb_read_->Read(output_data + read, size_per_read));
}
EXPECT_EQ(sizeof(output_data) - read,
pcb_read_->Read(output_data + read, size_per_read));
EXPECT_EQ(0, memcmp(kOutputRefDataWrap, output_data, sizeof(output_data)));
EXPECT_EQ(0u, pcb_read_->Read(output_data, sizeof(output_data)));
}
TEST_F(PartialCircularBufferTest, WrapOnceWithAppend) {
InitWriteBuffer(false);
WriteToBuffer(2);
InitWriteBuffer(true);
WriteToBuffer(2);
InitReadBuffer();
uint8_t output_data[sizeof(kOutputRefDataWrap)] = {};
EXPECT_EQ(sizeof(output_data),
pcb_read_->Read(output_data, sizeof(output_data)));
EXPECT_EQ(0, memcmp(kOutputRefDataWrap, output_data, sizeof(output_data)));
EXPECT_EQ(0u, pcb_read_->Read(output_data, sizeof(output_data)));
}
TEST_F(PartialCircularBufferTest, WrapTwiceWithAppend) {
InitWriteBuffer(false);
WriteToBuffer(4);
InitWriteBuffer(true);
WriteToBuffer(3);
InitReadBuffer();
uint8_t output_data[sizeof(kOutputRefDataWrap)] = {};
EXPECT_EQ(sizeof(output_data),
pcb_read_->Read(output_data, sizeof(output_data)));
EXPECT_EQ(0, memcmp(kOutputRefDataWrap, output_data, sizeof(output_data)));
EXPECT_EQ(0u, pcb_read_->Read(output_data, sizeof(output_data)));
}
TEST_F(PartialCircularBufferTest, WrapOnceThenOverwriteWithNoWrap) {
InitWriteBuffer(false);
WriteToBuffer(4);
InitWriteBuffer(false);
WriteToBuffer(1);
InitReadBuffer();
uint8_t output_data[sizeof(kInputData)] = {};
EXPECT_EQ(sizeof(output_data),
pcb_read_->Read(output_data, sizeof(output_data)));
EXPECT_EQ(0, memcmp(kInputData, output_data, sizeof(kInputData)));
EXPECT_EQ(0u, pcb_read_->Read(output_data, sizeof(output_data)));
}
TEST_F(PartialCircularBufferTest, WrapTwiceWithSingleWrite) {
const size_t kInputSize = sizeof(kInputData);
const size_t kLargeSize = kInputSize * 7;
uint8_t large_input[kLargeSize] = {};
for (size_t offset = 0; offset < kLargeSize; offset += kInputSize)
memcpy(large_input + offset, kInputData, kInputSize);
InitWriteBuffer(false);
pcb_write_->Write(large_input, kLargeSize);
InitReadBuffer();
uint8_t output_data[sizeof(kOutputRefDataWrap)] = {};
EXPECT_EQ(sizeof(output_data),
pcb_read_->Read(output_data, sizeof(output_data)));
EXPECT_EQ(0, memcmp(kOutputRefDataWrap, output_data, sizeof(output_data)));
EXPECT_EQ(0u, pcb_read_->Read(output_data, sizeof(output_data)));
}
} // namespace webrtc_logging
|