1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COMPONENTS_ZUCCHINI_ARM_UTILS_H_
#define COMPONENTS_ZUCCHINI_ARM_UTILS_H_
#include <stddef.h>
#include <stdint.h>
#include "base/check_op.h"
#include "components/zucchini/address_translator.h"
#include "components/zucchini/buffer_view.h"
namespace zucchini {
// References:
// * AArch32 (32-bit ARM, AKA ARM32):
// https://static.docs.arm.com/ddi0406/c/DDI0406C_C_arm_architecture_reference_manual.pdf
// * AArch64 (64-bit ARM):
// https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
// Definitions (used in Zucchini):
// * |instr_rva|: Instruction RVA: The RVA where an instruction is located. In
// ARM mode and for AArch64 this is 4-byte aligned; in THUMB2 mode this is
// 2-byte aligned.
// * |code|: Instruction code: ARM instruction code as seen in manual. In ARM
// mode and for AArch64, this is a 32-bit int. In THUMB2 mode, this may be a
// 16-bit or 32-bit int.
// * |disp|: Displacement: For branch instructions (e.g.: B, BL, BLX, and
// conditional varieties) this is the value encoded in instruction bytes.
// * PC: Program Counter: In ARM mode this is |instr_rva + 8|; in THUMB2 mode
// this is |instr_rva + 4|; for AArch64 this is |instr_rva|.
// * |target_rva|: Target RVA: The RVA targeted by a branch instruction.
//
// These are related by:
// |code| = Fetch(image data at offset(|instr_rva|)).
// |disp| = Decode(|code|).
// PC = |instr_rva| + {8 in ARM mode, 4 in THUMB2 mode, 0 for AArch64}.
// |target_rva| = PC + |disp| - (see "BLX complication" below)
//
// Example 1 (ARM mode):
// 00103050: 00 01 02 EA B 00183458
// |instr_rva| = 0x00103050 (4-byte aligned).
// |code| = 0xEA020100 (little endian fetched from data).
// |disp| = 0x00080400 (decoded from |code| with A24 -> B encoding T1).
// PC = |instr_rva| + 8 = 0x00103058 (ARM mode).
// |target_rva| = PC + |disp| = 0x00183458.
//
// Example 2 (THUMB2 mode):
// 001030A2: 00 F0 01 FA BL 001034A8
// |instr_rva| = 0x001030A2 (2-byte aligned).
// |code| = 0xF000FA01 (special THUMB2 mode data fetch).
// |disp| = 0x00000402 (decoded from |code| with T24 -> BL encoding T1).
// PC = |instr_rva| + 4 = 0x001030A6 (THUMB2 mode).
// |target_rva| = PC + |disp| = 0x001034A8.
//
// Example 3 (AArch64):
// 0000000000305070: 03 02 01 14 B 000000000034587C
// |instr_rva| = 0x00305070 (4-byte aligned, assumed to fit in 32-bit).
// |code| = 0x14010203 (little endian fetchd from data).
// |disp| = 0x0004080C (decoded from |code| with Immd -> B).
// PC = |instr_rva| = 0x00305070 (AArch64).
// |target_rva| = PC + |disp| = 0x0034587C.
// BLX complication: BLX transits between ARM mode and THUMB2 mode, and branches
// to an address. Therefore |instr_rva| must align by the "old" mode, and
// |target_rva| must align by the "new" mode. In particular:
// * BLX encoding A2 (ARM -> THUMB2): |instr_rva| is 4-byte aligned with
// PC = |instr_rva| + 8; |target_rva| is 2-byte aligned, and so |disp| is
// 2-byte aligned.
// * BLX encoding T2 (THUMB2 -> ARM): |instr_rva| is 2-byte aligned with
// PC = |instr_rva| + 4; |target_rva| is 4-byte aligned. Complication: BLX
// encoding T2 stores a bit |H| that corresponds to "2" in binary, but |H|
// must be set to 0. Thus the encoded value is effectively 4-byte aligned. So
// when computing |target_rva| by adding PC (2-byte aligned) to the stored
// value (4-byte aligned), the result must be rounded down to the nearest
// 4-byte aligned address.
// The last situation creates ambiguity in how |disp| is defined! Alternatives:
// (1) |disp| := |target_rva| - PC: So |code| <-> |disp| for BLX encoding T2,
// requires |instr_rva| % 4 to be determined, and adjustments made.
// (2) |disp| := Value stored in |code|: So |disp| <-> |target_rva| for BLX
// encoding T2 requires adjustment: |disp| -> |target_rva| needs to round
// down, whereas |target_rva| -> |disp| needs to round up.
// We adopt (2) to simplify |code| <-> |disp|, since that gets used.
using arm_disp_t = int32_t;
// Alignment requirement for |target_rva|, useful for |disp| <-> |target_rva|
// (also requires |instr_rva|). Alignment is determined by parsing |code| in
// *Decode() functions. kArmAlignFail is also defined to indicate parse failure.
// Alignments can be 2 or 4. These values are also used in the enum, so
// |x % align| with |x & (align - 1)| to compute alignment.
enum ArmAlign : uint32_t {
kArmAlignFail = 0U,
kArmAlign2 = 2U,
kArmAlign4 = 4U,
};
// Traits for rel32 address types (technically rel64 for AArch64 -- but we
// assume values are small enough), which form collections of strategies to
// process each rel32 address type.
template <typename ENUM_ADDR_TYPE,
ENUM_ADDR_TYPE ADDR_TYPE,
typename CODE_T,
CODE_T (*FETCH)(ConstBufferView, offset_t),
void (*STORE)(MutableBufferView, offset_t, CODE_T),
ArmAlign (*DECODE)(CODE_T, arm_disp_t*),
bool (*ENCODE)(arm_disp_t, CODE_T*),
bool (*READ)(rva_t, CODE_T, rva_t*),
bool (*WRITE)(rva_t, rva_t, CODE_T*)>
class ArmAddrTraits {
public:
static constexpr ENUM_ADDR_TYPE addr_type = ADDR_TYPE;
using code_t = CODE_T;
static constexpr CODE_T (*Fetch)(ConstBufferView, offset_t) = FETCH;
static constexpr void (*Store)(MutableBufferView, offset_t, CODE_T) = STORE;
static constexpr ArmAlign (*Decode)(CODE_T, arm_disp_t*) = DECODE;
static constexpr bool (*Encode)(arm_disp_t, CODE_T*) = ENCODE;
static constexpr bool (*Read)(rva_t, CODE_T, rva_t*) = READ;
static constexpr bool (*Write)(rva_t, rva_t, CODE_T*) = WRITE;
};
// Given THUMB2 instruction |code16|, returns 2 if it's from a 16-bit THUMB2
// instruction, or 4 if it's from a 32-bit THUMB2 instruction.
inline int GetThumb2InstructionSize(uint16_t code16) {
return ((code16 & 0xF000) == 0xF000 || (code16 & 0xF800) == 0xE800) ? 4 : 2;
}
// A translator for ARM mode and THUMB2 mode with static functions that
// translate among |code|, |disp|, and |target_rva|.
class AArch32Rel32Translator {
public:
// Rel32 address types enumeration.
enum AddrType : uint8_t {
ADDR_NONE = 0xFF,
// Naming: Here "A24" represents ARM mode instructions where |code|
// dedicates 24 bits (including sign bit) to specify |disp|. Similarly, "T8"
// represents THUMB2 mode instructions with 8 bits for |disp|. Currently
// only {A24, T8, T11, T20, T24} are defined. These are not to be confused
// with "B encoding A1", "B encoding T3", etc., which are specific encoding
// schemes given by the manual for the "B" (or other) instructions (only
// {A1, A2, T1, T2, T3, T4} are seen).
ADDR_A24 = 0,
ADDR_T8,
ADDR_T11,
ADDR_T20,
ADDR_T24,
NUM_ADDR_TYPE
};
AArch32Rel32Translator();
AArch32Rel32Translator(const AArch32Rel32Translator&) = delete;
const AArch32Rel32Translator& operator=(const AArch32Rel32Translator&) =
delete;
// Fetches the 32-bit ARM instruction |code| at |view[idx]|.
static inline uint32_t FetchArmCode32(ConstBufferView view, offset_t idx) {
return view.read<uint32_t>(idx);
}
// Fetches the 16-bit THUMB2 instruction |code| at |view[idx]|.
static inline uint16_t FetchThumb2Code16(ConstBufferView view, offset_t idx) {
return view.read<uint16_t>(idx);
}
// Fetches the 32-bit THUMB2 instruction |code| at |view[idx]|.
static inline uint32_t FetchThumb2Code32(ConstBufferView view, offset_t idx) {
// By convention, 32-bit THUMB2 instructions are written (as seen later) as:
// [byte3, byte2, byte1, byte0].
// However (assuming little-endian ARM) the in-memory representation is
// [byte2, byte3, byte0, byte1].
return (static_cast<uint32_t>(view.read<uint16_t>(idx)) << 16) |
view.read<uint16_t>(idx + 2);
}
// Stores the 32-bit ARM instruction |code| to |mutable_view[idx]|.
static inline void StoreArmCode32(MutableBufferView mutable_view,
offset_t idx,
uint32_t code) {
mutable_view.write<uint32_t>(idx, code);
}
// Stores the 16-bit THUMB2 instruction |code| to |mutable_view[idx]|.
static inline void StoreThumb2Code16(MutableBufferView mutable_view,
offset_t idx,
uint16_t code) {
mutable_view.write<uint16_t>(idx, code);
}
// Stores the next 32-bit THUMB2 instruction |code| to |mutable_view[idx]|.
static inline void StoreThumb2Code32(MutableBufferView mutable_view,
offset_t idx,
uint32_t code) {
mutable_view.write<uint16_t>(idx, static_cast<uint16_t>(code >> 16));
mutable_view.write<uint16_t>(idx + 2, static_cast<uint16_t>(code & 0xFFFF));
}
// The following functions convert |code| (16-bit or 32-bit) from/to |disp|
// or |target_rva|, for specific branch instruction types.
// Read*() and write*() functions convert between |code| and |target_rva|.
// * Decode*() determines whether |code16/code32| is a branch instruction
// of a specific type. If so, then extracts |*disp| and returns the required
// ArmAlign. Otherwise returns kArmAlignFail.
// * Encode*() determines whether |*code16/*code32| is a branch instruction of
// a specific type, and whether it can accommodate |disp|. If so, then
// re-encodes |*code32| using |disp|, and returns true. Otherwise returns
// false.
// * Read*() is similar to Decode*(), but on success, extracts |*target_rva|
// using |instr_rva| as aid, performs the proper alignment, and returns
// true. Otherwise returns false.
// * Write*() is similar to Encode*(), takes |target_rva| instead, and uses
// |instr_rva| as aid.
static ArmAlign DecodeA24(uint32_t code32, arm_disp_t* disp);
static bool EncodeA24(arm_disp_t disp, uint32_t* code32);
// TODO(huangs): Refactor the Read*() functions: These are identical
// except for Decode*() and Get*TargetRvaFromDisp().
static bool ReadA24(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
static bool WriteA24(rva_t instr_rva, rva_t target_rva, uint32_t* code32);
static ArmAlign DecodeT8(uint16_t code16, arm_disp_t* disp);
static bool EncodeT8(arm_disp_t disp, uint16_t* code16);
static bool ReadT8(rva_t instr_rva, uint16_t code16, rva_t* target_rva);
static bool WriteT8(rva_t instr_rva, rva_t target_rva, uint16_t* code16);
static ArmAlign DecodeT11(uint16_t code16, arm_disp_t* disp);
static bool EncodeT11(arm_disp_t disp, uint16_t* code16);
static bool ReadT11(rva_t instr_rva, uint16_t code16, rva_t* target_rva);
static bool WriteT11(rva_t instr_rva, rva_t target_rva, uint16_t* code16);
static ArmAlign DecodeT20(uint32_t code32, arm_disp_t* disp);
static bool EncodeT20(arm_disp_t disp, uint32_t* code32);
static bool ReadT20(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
static bool WriteT20(rva_t instr_rva, rva_t target_rva, uint32_t* code32);
static ArmAlign DecodeT24(uint32_t code32, arm_disp_t* disp);
static bool EncodeT24(arm_disp_t disp, uint32_t* code32);
static bool ReadT24(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
static bool WriteT24(rva_t instr_rva, rva_t target_rva, uint32_t* code32);
// Computes |target_rva| from |instr_rva| and |disp| in ARM mode.
static inline rva_t GetArmTargetRvaFromDisp(rva_t instr_rva,
arm_disp_t disp,
ArmAlign align) {
rva_t ret = static_cast<rva_t>(instr_rva + 8 + disp);
// Align down.
DCHECK_NE(align, kArmAlignFail);
return ret - (ret & static_cast<rva_t>(align - 1));
}
// Computes |target_rva| from |instr_rva| and |disp| in THUMB2 mode.
static inline rva_t GetThumb2TargetRvaFromDisp(rva_t instr_rva,
arm_disp_t disp,
ArmAlign align) {
rva_t ret = static_cast<rva_t>(instr_rva + 4 + disp);
// Align down.
DCHECK_NE(align, kArmAlignFail);
return ret - (ret & static_cast<rva_t>(align - 1));
}
// Computes |disp| from |instr_rva| and |target_rva| in ARM mode.
static inline arm_disp_t GetArmDispFromTargetRva(rva_t instr_rva,
rva_t target_rva,
ArmAlign align) {
// Assumes that |instr_rva + 8| does not overflow.
arm_disp_t ret = static_cast<arm_disp_t>(target_rva) -
static_cast<arm_disp_t>(instr_rva + 8);
// Align up.
DCHECK_NE(align, kArmAlignFail);
return ret + ((-ret) & static_cast<arm_disp_t>(align - 1));
}
// Computes |disp| from |instr_rva| and |target_rva| in THUMB2 mode.
static inline arm_disp_t GetThumb2DispFromTargetRva(rva_t instr_rva,
rva_t target_rva,
ArmAlign align) {
// Assumes that |instr_rva + 4| does not overflow.
arm_disp_t ret = static_cast<arm_disp_t>(target_rva) -
static_cast<arm_disp_t>(instr_rva + 4);
// Align up.
DCHECK_NE(align, kArmAlignFail);
return ret + ((-ret) & static_cast<arm_disp_t>(align - 1));
}
// Strategies to process each rel32 address type.
using AddrTraits_A24 = ArmAddrTraits<AddrType,
ADDR_A24,
uint32_t,
FetchArmCode32,
StoreArmCode32,
DecodeA24,
EncodeA24,
ReadA24,
WriteA24>;
using AddrTraits_T8 = ArmAddrTraits<AddrType,
ADDR_T8,
uint16_t,
FetchThumb2Code16,
StoreThumb2Code16,
DecodeT8,
EncodeT8,
ReadT8,
WriteT8>;
using AddrTraits_T11 = ArmAddrTraits<AddrType,
ADDR_T11,
uint16_t,
FetchThumb2Code16,
StoreThumb2Code16,
DecodeT11,
EncodeT11,
ReadT11,
WriteT11>;
using AddrTraits_T20 = ArmAddrTraits<AddrType,
ADDR_T20,
uint32_t,
FetchThumb2Code32,
StoreThumb2Code32,
DecodeT20,
EncodeT20,
ReadT20,
WriteT20>;
using AddrTraits_T24 = ArmAddrTraits<AddrType,
ADDR_T24,
uint32_t,
FetchThumb2Code32,
StoreThumb2Code32,
DecodeT24,
EncodeT24,
ReadT24,
WriteT24>;
};
// Translator for AArch64, which is simpler than 32-bit ARM. Although pointers
// are 64-bit, displacements are within 32-bit.
class AArch64Rel32Translator {
public:
// Rel64 address types enumeration.
enum AddrType : uint8_t {
ADDR_NONE = 0xFF,
ADDR_IMMD14 = 0,
ADDR_IMMD19,
ADDR_IMMD26,
NUM_ADDR_TYPE
};
// Although RVA for 64-bit architecture can be 64-bit in length, we make the
// bold assumption that for ELF images that RVA will stay nicely in 32-bit!
AArch64Rel32Translator();
AArch64Rel32Translator(const AArch64Rel32Translator&) = delete;
const AArch64Rel32Translator& operator=(const AArch64Rel32Translator&) =
delete;
static inline uint32_t FetchCode32(ConstBufferView view, offset_t idx) {
return view.read<uint32_t>(idx);
}
static inline void StoreCode32(MutableBufferView mutable_view,
offset_t idx,
uint32_t code) {
mutable_view.write<uint32_t>(idx, code);
}
// Conversion functions for |code32| from/to |disp| or |target_rva|, similar
// to the counterparts in AArch32Rel32Translator.
static ArmAlign DecodeImmd14(uint32_t code32, arm_disp_t* disp);
static bool EncodeImmd14(arm_disp_t disp, uint32_t* code32);
// TODO(huangs): Refactor the Read*() functions: These are identical
// except for Decode*().
static bool ReadImmd14(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
static bool WriteImmd14(rva_t instr_rva, rva_t target_rva, uint32_t* code32);
static ArmAlign DecodeImmd19(uint32_t code32, arm_disp_t* disp);
static bool EncodeImmd19(arm_disp_t disp, uint32_t* code32);
static bool ReadImmd19(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
static bool WriteImmd19(rva_t instr_rva, rva_t target_rva, uint32_t* code32);
static ArmAlign DecodeImmd26(uint32_t code32, arm_disp_t* disp);
static bool EncodeImmd26(arm_disp_t disp, uint32_t* code32);
static bool ReadImmd26(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
static bool WriteImmd26(rva_t instr_rva, rva_t target_rva, uint32_t* code32);
static inline rva_t GetTargetRvaFromDisp(rva_t instr_rva, arm_disp_t disp) {
return static_cast<rva_t>(instr_rva + disp);
}
static inline arm_disp_t GetDispFromTargetRva(rva_t instr_rva,
rva_t target_rva) {
return static_cast<arm_disp_t>(target_rva - instr_rva);
}
// Strategies to process each rel32 address type.
using AddrTraits_Immd14 = ArmAddrTraits<AddrType,
ADDR_IMMD14,
uint32_t,
FetchCode32,
StoreCode32,
DecodeImmd14,
EncodeImmd14,
ReadImmd14,
WriteImmd14>;
using AddrTraits_Immd19 = ArmAddrTraits<AddrType,
ADDR_IMMD19,
uint32_t,
FetchCode32,
StoreCode32,
DecodeImmd19,
EncodeImmd19,
ReadImmd19,
WriteImmd19>;
using AddrTraits_Immd26 = ArmAddrTraits<AddrType,
ADDR_IMMD26,
uint32_t,
FetchCode32,
StoreCode32,
DecodeImmd26,
EncodeImmd26,
ReadImmd26,
WriteImmd26>;
};
} // namespace zucchini
#endif // COMPONENTS_ZUCCHINI_ARM_UTILS_H_
|