1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "components/zucchini/disassembler_elf.h"
#include <stddef.h>
#include <utility>
#include "base/logging.h"
#include "base/numerics/checked_math.h"
#include "base/numerics/safe_conversions.h"
#include "components/zucchini/abs32_utils.h"
#include "components/zucchini/algorithm.h"
#include "components/zucchini/arm_utils.h"
#include "components/zucchini/buffer_source.h"
namespace zucchini {
namespace {
constexpr uint64_t kElfImageBase = 0;
constexpr size_t kSizeBound = 0x7FFF0000;
// Threshold value for heuristics to detect THUMB2 code.
constexpr double kAArch32BitCondAlwaysDensityThreshold = 0.4;
// Bit fields for JudgeSection() return value.
enum SectionJudgement : int {
// Bit: Section does not invalidate ELF, but may or may not be useful.
SECTION_BIT_SAFE = 1 << 0,
// Bit: Section useful for AddressTranslator, to map between offsets and RVAs.
SECTION_BIT_USEFUL_FOR_ADDRESS_TRANSLATOR = 1 << 1,
// Bit: Section useful for |offset_bound|, to estimate ELF size.
SECTION_BIT_USEFUL_FOR_OFFSET_BOUND = 1 << 2,
// Bit: Section potentially useful for pointer extraction.
SECTION_BIT_MAYBE_USEFUL_FOR_POINTERS = 1 << 3,
// The following are verdicts from combining bits, to improve semantics.
// Default value: A section is malformed and invalidates ELF.
SECTION_IS_MALFORMED = 0,
// Section does not invalidate ELF, but is also not used for anything.
SECTION_IS_USELESS = SECTION_BIT_SAFE,
};
// Decides how a section affects ELF parsing, and returns a bit field composed
// from SectionJudgement values.
template <class TRAITS>
int JudgeSection(size_t image_size, const typename TRAITS::Elf_Shdr* section) {
// BufferRegion uses |size_t| this can be 32-bit in some cases. For Elf64
// |sh_addr|, |sh_offset| and |sh_size| are 64-bit this can result in
// overflows in the subsequent validation steps.
if (!base::IsValueInRangeForNumericType<size_t>(section->sh_addr) ||
!base::IsValueInRangeForNumericType<size_t>(section->sh_offset) ||
!base::IsValueInRangeForNumericType<size_t>(section->sh_size)) {
return SECTION_IS_MALFORMED;
}
// Examine RVA range: Reject if numerical overflow may happen.
if (!BufferRegion{static_cast<size_t>(section->sh_addr),
static_cast<size_t>(section->sh_size)}
.FitsIn(kSizeBound))
return SECTION_IS_MALFORMED;
// Examine offset range: If section takes up |image| data then be stricter.
size_t offset_bound =
(section->sh_type == elf::SHT_NOBITS) ? kSizeBound : image_size;
if (!BufferRegion{static_cast<size_t>(section->sh_offset),
static_cast<size_t>(section->sh_size)}
.FitsIn(offset_bound))
return SECTION_IS_MALFORMED;
// Empty sections don't contribute to offset-RVA mapping. For consistency, it
// should also not affect |offset_bounds|.
if (section->sh_size == 0)
return SECTION_IS_USELESS;
// Sections with |sh_addr == 0| are ignored because these tend to duplicates
// (can cause problems for lookup) and uninteresting. For consistency, it
// should also not affect |offset_bounds|.
if (section->sh_addr == 0)
return SECTION_IS_USELESS;
if (section->sh_type == elf::SHT_NOBITS) {
// Special case for .tbss sections: These should be ignored because they may
// have offset-RVA map that don't match other sections.
if (section->sh_flags & elf::SHF_TLS)
return SECTION_IS_USELESS;
// Section is useful for offset-RVA translation, but does not affect
// |offset_bounds| since it can have large virtual size (e.g., .bss).
return SECTION_BIT_SAFE | SECTION_BIT_USEFUL_FOR_ADDRESS_TRANSLATOR;
}
return SECTION_BIT_SAFE | SECTION_BIT_USEFUL_FOR_ADDRESS_TRANSLATOR |
SECTION_BIT_USEFUL_FOR_OFFSET_BOUND |
SECTION_BIT_MAYBE_USEFUL_FOR_POINTERS;
}
// Determines whether |section| is a reloc section.
template <class TRAITS>
bool IsRelocSection(const typename TRAITS::Elf_Shdr& section) {
DCHECK_GT(section.sh_size, 0U);
if (section.sh_type == elf::SHT_REL) {
// Also validate |section.sh_entsize|, which gets used later.
return section.sh_entsize == sizeof(typename TRAITS::Elf_Rel);
}
if (section.sh_type == elf::SHT_RELA)
return section.sh_entsize == sizeof(typename TRAITS::Elf_Rela);
return false;
}
// Determines whether |section| is a section with executable code.
template <class TRAITS>
bool IsExecSection(const typename TRAITS::Elf_Shdr& section) {
DCHECK_GT(section.sh_size, 0U);
return section.sh_type == elf::SHT_PROGBITS &&
(section.sh_flags & elf::SHF_EXECINSTR) != 0;
}
} // namespace
/******** Elf32Traits ********/
// static
constexpr Bitness Elf32Traits::kBitness;
constexpr elf::FileClass Elf32Traits::kIdentificationClass;
/******** Elf32IntelTraits ********/
// static
constexpr ExecutableType Elf32IntelTraits::kExeType;
const char Elf32IntelTraits::kExeTypeString[] = "ELF x86";
constexpr elf::MachineArchitecture Elf32IntelTraits::kMachineValue;
constexpr uint32_t Elf32IntelTraits::kRelType;
/******** ElfAArch32Traits ********/
// static
constexpr ExecutableType ElfAArch32Traits::kExeType;
const char ElfAArch32Traits::kExeTypeString[] = "ELF ARM";
constexpr elf::MachineArchitecture ElfAArch32Traits::kMachineValue;
constexpr uint32_t ElfAArch32Traits::kRelType;
/******** Elf64Traits ********/
// static
constexpr Bitness Elf64Traits::kBitness;
constexpr elf::FileClass Elf64Traits::kIdentificationClass;
/******** Elf64IntelTraits ********/
// static
constexpr ExecutableType Elf64IntelTraits::kExeType;
const char Elf64IntelTraits::kExeTypeString[] = "ELF x64";
constexpr elf::MachineArchitecture Elf64IntelTraits::kMachineValue;
constexpr uint32_t Elf64IntelTraits::kRelType;
/******** ElfAArch64Traits ********/
// static
constexpr ExecutableType ElfAArch64Traits::kExeType;
const char ElfAArch64Traits::kExeTypeString[] = "ELF ARM64";
constexpr elf::MachineArchitecture ElfAArch64Traits::kMachineValue;
constexpr uint32_t ElfAArch64Traits::kRelType;
/******** DisassemblerElf ********/
// static.
template <class TRAITS>
bool DisassemblerElf<TRAITS>::QuickDetect(ConstBufferView image) {
BufferSource source(image);
// Do not consume the bytes for the magic value, as they are part of the
// header.
if (!source.CheckNextBytes({0x7F, 'E', 'L', 'F'}))
return false;
auto* header = source.GetPointer<typename Traits::Elf_Ehdr>();
if (!header)
return false;
if (header->e_ident[elf::EI_CLASS] != Traits::kIdentificationClass)
return false;
if (header->e_ident[elf::EI_DATA] != 1) // Only ELFDATA2LSB is supported.
return false;
if (header->e_type != elf::ET_EXEC && header->e_type != elf::ET_DYN)
return false;
if (header->e_version != 1 || header->e_ident[elf::EI_VERSION] != 1)
return false;
if (header->e_machine != supported_architecture())
return false;
if (header->e_shentsize != sizeof(typename Traits::Elf_Shdr))
return false;
return true;
}
template <class TRAITS>
DisassemblerElf<TRAITS>::~DisassemblerElf() = default;
template <class TRAITS>
ExecutableType DisassemblerElf<TRAITS>::GetExeType() const {
return Traits::kExeType;
}
template <class TRAITS>
std::string DisassemblerElf<TRAITS>::GetExeTypeString() const {
return Traits::kExeTypeString;
}
// |num_equivalence_iterations_| = 2 for reloc -> abs32.
template <class TRAITS>
DisassemblerElf<TRAITS>::DisassemblerElf() : Disassembler(2) {}
template <class TRAITS>
bool DisassemblerElf<TRAITS>::Parse(ConstBufferView image) {
image_ = image;
if (!ParseHeader())
return false;
ParseSections();
return true;
}
template <class TRAITS>
std::unique_ptr<ReferenceReader> DisassemblerElf<TRAITS>::MakeReadRelocs(
offset_t lo,
offset_t hi) {
DCHECK_LE(lo, hi);
DCHECK_LE(hi, image_.size());
if (reloc_section_dims_.empty())
return std::make_unique<EmptyReferenceReader>();
return std::make_unique<RelocReaderElf>(
image_, Traits::kBitness, reloc_section_dims_,
supported_relocation_type(), lo, hi, translator_);
}
template <class TRAITS>
std::unique_ptr<ReferenceWriter> DisassemblerElf<TRAITS>::MakeWriteRelocs(
MutableBufferView image) {
return std::make_unique<RelocWriterElf>(image, Traits::kBitness, translator_);
}
template <class TRAITS>
bool DisassemblerElf<TRAITS>::ParseHeader() {
BufferSource source(image_);
// Ensure any offsets will fit within the |image_|'s bounds.
if (!base::IsValueInRangeForNumericType<offset_t>(image_.size()))
return false;
// Ensures |header_| is valid later on.
if (!QuickDetect(image_))
return false;
header_ = source.GetPointer<typename Traits::Elf_Ehdr>();
sections_count_ = header_->e_shnum;
source = BufferSource(image_, header_->e_shoff);
sections_ = source.GetArray<typename Traits::Elf_Shdr>(sections_count_);
if (!sections_)
return false;
offset_t section_table_end =
base::checked_cast<offset_t>(source.begin() - image_.begin());
segments_count_ = header_->e_phnum;
source = BufferSource(image_, header_->e_phoff);
segments_ = source.GetArray<typename Traits::Elf_Phdr>(segments_count_);
if (!segments_)
return false;
offset_t segment_table_end =
base::checked_cast<offset_t>(source.begin() - image_.begin());
// Check string section -- even though we've stopped using them.
elf::Elf32_Half string_section_id = header_->e_shstrndx;
if (string_section_id >= sections_count_)
return false;
size_t section_names_size = sections_[string_section_id].sh_size;
if (section_names_size > 0) {
// If nonempty, then last byte of string section must be null.
const char* section_names = nullptr;
source = BufferSource(image_, sections_[string_section_id].sh_offset);
section_names = source.GetArray<char>(section_names_size);
if (!section_names || section_names[section_names_size - 1] != '\0')
return false;
}
// Establish bound on encountered offsets.
offset_t offset_bound = std::max(section_table_end, segment_table_end);
// Visits |segments_| to get estimate on |offset_bound|.
for (const typename Traits::Elf_Phdr* segment = segments_;
segment != segments_ + segments_count_; ++segment) {
// |image_.covers()| is a sufficient check except when size_t is 32 bit and
// parsing ELF64. In such cases a value-in-range check is needed on the
// segment. This fixes crbug/1035603.
offset_t segment_end;
base::CheckedNumeric<offset_t> checked_segment_end = segment->p_offset;
checked_segment_end += segment->p_filesz;
if (!checked_segment_end.AssignIfValid(&segment_end) ||
!image_.covers({static_cast<size_t>(segment->p_offset),
static_cast<size_t>(segment->p_filesz)})) {
return false;
}
offset_bound = std::max(offset_bound, segment_end);
}
// Visit and validate each section; add address translation data to |units|.
std::vector<AddressTranslator::Unit> units;
units.reserve(sections_count_);
section_judgements_.reserve(sections_count_);
for (int i = 0; i < sections_count_; ++i) {
const typename Traits::Elf_Shdr* section = §ions_[i];
int judgement = JudgeSection<Traits>(image_.size(), section);
section_judgements_.push_back(judgement);
if ((judgement & SECTION_BIT_SAFE) == 0)
return false;
uint32_t sh_size = base::checked_cast<uint32_t>(section->sh_size);
offset_t sh_offset = base::checked_cast<offset_t>(section->sh_offset);
rva_t sh_addr = base::checked_cast<rva_t>(section->sh_addr);
if ((judgement & SECTION_BIT_USEFUL_FOR_ADDRESS_TRANSLATOR) != 0) {
// Store mappings between RVA and offset.
units.push_back({sh_offset, sh_size, sh_addr, sh_size});
}
if ((judgement & SECTION_BIT_USEFUL_FOR_OFFSET_BOUND) != 0) {
offset_t section_end = base::checked_cast<offset_t>(sh_offset + sh_size);
offset_bound = std::max(offset_bound, section_end);
}
}
// Initialize |translator_| for offset-RVA translations. Any inconsistency
// (e.g., 2 offsets correspond to the same RVA) would invalidate the ELF file.
if (translator_.Initialize(std::move(units)) != AddressTranslator::kSuccess)
return false;
DCHECK_LE(offset_bound, image_.size());
image_.shrink(offset_bound);
return true;
}
template <class TRAITS>
void DisassemblerElf<TRAITS>::ExtractInterestingSectionHeaders() {
DCHECK(reloc_section_dims_.empty());
DCHECK(exec_headers_.empty());
for (elf::Elf32_Half i = 0; i < sections_count_; ++i) {
const typename Traits::Elf_Shdr* section = sections_ + i;
if ((section_judgements_[i] & SECTION_BIT_MAYBE_USEFUL_FOR_POINTERS) != 0) {
if (IsRelocSection<Traits>(*section))
reloc_section_dims_.emplace_back(*section);
else if (IsExecSection<Traits>(*section))
exec_headers_.push_back(section);
}
}
auto comp = [](const typename Traits::Elf_Shdr* a,
const typename Traits::Elf_Shdr* b) {
return a->sh_offset < b->sh_offset;
};
std::sort(reloc_section_dims_.begin(), reloc_section_dims_.end());
std::sort(exec_headers_.begin(), exec_headers_.end(), comp);
}
template <class TRAITS>
void DisassemblerElf<TRAITS>::GetAbs32FromRelocSections() {
constexpr int kAbs32Width = Traits::kVAWidth;
DCHECK(abs32_locations_.empty());
// Read reloc targets to get preliminary abs32 locations.
std::unique_ptr<ReferenceReader> relocs = MakeReadRelocs(0, offset_t(size()));
for (auto ref = relocs->GetNext(); ref.has_value(); ref = relocs->GetNext())
abs32_locations_.push_back(ref->target);
std::sort(abs32_locations_.begin(), abs32_locations_.end());
// Abs32 references must have targets translatable to offsets. Remove those
// that are unable to do so.
size_t num_untranslatable =
RemoveUntranslatableAbs32(image_, {Traits::kBitness, kElfImageBase},
translator_, &abs32_locations_);
LOG_IF(WARNING, num_untranslatable) << "Removed " << num_untranslatable
<< " untranslatable abs32 references.";
// Abs32 reference bodies must not overlap. If found, simply remove them.
size_t num_overlapping =
RemoveOverlappingAbs32Locations(kAbs32Width, &abs32_locations_);
LOG_IF(WARNING, num_overlapping)
<< "Removed " << num_overlapping
<< " abs32 references with overlapping bodies.";
abs32_locations_.shrink_to_fit();
}
template <class TRAITS>
void DisassemblerElf<TRAITS>::GetRel32FromCodeSections() {
for (const typename Traits::Elf_Shdr* section : exec_headers_)
ParseExecSection(*section);
PostProcessRel32();
}
template <class TRAITS>
void DisassemblerElf<TRAITS>::ParseSections() {
ExtractInterestingSectionHeaders();
GetAbs32FromRelocSections();
GetRel32FromCodeSections();
}
/******** DisassemblerElfIntel ********/
template <class TRAITS>
DisassemblerElfIntel<TRAITS>::DisassemblerElfIntel() = default;
template <class TRAITS>
DisassemblerElfIntel<TRAITS>::~DisassemblerElfIntel() = default;
template <class TRAITS>
std::vector<ReferenceGroup> DisassemblerElfIntel<TRAITS>::MakeReferenceGroups()
const {
return {
{ReferenceTypeTraits{sizeof(TRAITS::Elf_Rel::r_offset), TypeTag(kReloc),
PoolTag(kReloc)},
&DisassemblerElfIntel<TRAITS>::MakeReadRelocs,
&DisassemblerElfIntel<TRAITS>::MakeWriteRelocs},
{ReferenceTypeTraits{Traits::kVAWidth, TypeTag(kAbs32), PoolTag(kAbs32)},
&DisassemblerElfIntel<TRAITS>::MakeReadAbs32,
&DisassemblerElfIntel<TRAITS>::MakeWriteAbs32},
// N.B.: Rel32 |width| is 4 bytes, even for x64.
{ReferenceTypeTraits{4, TypeTag(kRel32), PoolTag(kRel32)},
&DisassemblerElfIntel<TRAITS>::MakeReadRel32,
&DisassemblerElfIntel<TRAITS>::MakeWriteRel32}};
}
template <class TRAITS>
void DisassemblerElfIntel<TRAITS>::ParseExecSection(
const typename TRAITS::Elf_Shdr& section) {
constexpr int kAbs32Width = Traits::kVAWidth;
// |this->| is needed to access protected members of templated base class. To
// reduce noise, use local references for these.
ConstBufferView& image_ = this->image_;
const AddressTranslator& translator_ = this->translator_;
auto& abs32_locations_ = this->abs32_locations_;
// Range of values was ensured in ParseHeader().
rva_t start_rva = base::checked_cast<rva_t>(section.sh_addr);
rva_t end_rva = base::checked_cast<rva_t>(start_rva + section.sh_size);
AddressTranslator::RvaToOffsetCache target_rva_checker(translator_);
ConstBufferView region(image_.begin() + section.sh_offset, section.sh_size);
Abs32GapFinder gap_finder(image_, region, abs32_locations_, kAbs32Width);
typename TRAITS::Rel32FinderUse rel_finder(image_, translator_);
// Iterate over gaps between abs32 references, to avoid collision.
while (gap_finder.FindNext()) {
rel_finder.SetRegion(gap_finder.GetGap());
while (rel_finder.FindNext()) {
auto rel32 = rel_finder.GetRel32();
if (target_rva_checker.IsValid(rel32.target_rva) &&
(rel32.can_point_outside_section ||
(start_rva <= rel32.target_rva && rel32.target_rva < end_rva))) {
rel_finder.Accept();
rel32_locations_.push_back(rel32.location);
}
}
}
}
template <class TRAITS>
void DisassemblerElfIntel<TRAITS>::PostProcessRel32() {
rel32_locations_.shrink_to_fit();
std::sort(rel32_locations_.begin(), rel32_locations_.end());
}
template <class TRAITS>
std::unique_ptr<ReferenceReader> DisassemblerElfIntel<TRAITS>::MakeReadAbs32(
offset_t lo,
offset_t hi) {
// TODO(huangs): Don't use Abs32RvaExtractorWin32 here; use new class that
// caters to different ELF architectures.
Abs32RvaExtractorWin32 abs_rva_extractor(
this->image_, AbsoluteAddress(TRAITS::kBitness, kElfImageBase),
this->abs32_locations_, lo, hi);
return std::make_unique<Abs32ReaderWin32>(std::move(abs_rva_extractor),
this->translator_);
}
template <class TRAITS>
std::unique_ptr<ReferenceWriter> DisassemblerElfIntel<TRAITS>::MakeWriteAbs32(
MutableBufferView image) {
return std::make_unique<Abs32WriterWin32>(
image, AbsoluteAddress(TRAITS::kBitness, kElfImageBase),
this->translator_);
}
template <class TRAITS>
std::unique_ptr<ReferenceReader> DisassemblerElfIntel<TRAITS>::MakeReadRel32(
offset_t lo,
offset_t hi) {
return std::make_unique<Rel32ReaderX86>(this->image_, lo, hi,
&rel32_locations_, this->translator_);
}
template <class TRAITS>
std::unique_ptr<ReferenceWriter> DisassemblerElfIntel<TRAITS>::MakeWriteRel32(
MutableBufferView image) {
return std::make_unique<Rel32WriterX86>(image, this->translator_);
}
// Explicit instantiation for supported classes.
template class DisassemblerElfIntel<Elf32IntelTraits>;
template class DisassemblerElfIntel<Elf64IntelTraits>;
template bool DisassemblerElf<Elf32IntelTraits>::QuickDetect(
ConstBufferView image);
template bool DisassemblerElf<Elf64IntelTraits>::QuickDetect(
ConstBufferView image);
/******** DisassemblerElfArm ********/
template <class Traits>
DisassemblerElfArm<Traits>::DisassemblerElfArm() = default;
template <class Traits>
DisassemblerElfArm<Traits>::~DisassemblerElfArm() = default;
template <class Traits>
bool DisassemblerElfArm<Traits>::IsTargetOffsetInExecSection(
offset_t offset) const {
// Executable sections can appear in large numbers in .o files and in
// pathological cases. Since this function may be called for each reference
// candidate, linear search may be too slow (so use binary search).
return IsTargetOffsetInElfSectionList(this->exec_headers_, offset);
}
template <class Traits>
void DisassemblerElfArm<Traits>::ParseExecSection(
const typename Traits::Elf_Shdr& section) {
ConstBufferView& image_ = this->image_;
const AddressTranslator& translator_ = this->translator_;
auto& abs32_locations_ = this->abs32_locations_;
ConstBufferView region(image_.begin() + section.sh_offset, section.sh_size);
Abs32GapFinder gap_finder(image_, region, abs32_locations_, Traits::kVAWidth);
std::unique_ptr<typename Traits::Rel32FinderUse> rel_finder =
MakeRel32Finder(section);
AddressTranslator::RvaToOffsetCache rva_to_offset(translator_);
while (gap_finder.FindNext()) {
rel_finder->SetRegion(gap_finder.GetGap());
while (rel_finder->FindNext()) {
auto rel32 = rel_finder->GetRel32();
offset_t target_offset = rva_to_offset.Convert(rel32.target_rva);
if (target_offset != kInvalidOffset) {
// For robustness, reject illegal offsets, which can arise from, e.g.,
// misidentify ARM vs. THUMB2 mode, or even misidentifying data as code!
if (IsTargetOffsetInExecSection(target_offset)) {
rel_finder->Accept();
rel32_locations_table_[rel32.type].push_back(rel32.location);
}
}
}
}
}
template <class Traits>
void DisassemblerElfArm<Traits>::PostProcessRel32() {
for (int type = 0; type < AArch32Rel32Translator::NUM_ADDR_TYPE; ++type) {
std::sort(rel32_locations_table_[type].begin(),
rel32_locations_table_[type].end());
rel32_locations_table_[type].shrink_to_fit();
}
}
template <class Traits>
std::unique_ptr<ReferenceReader> DisassemblerElfArm<Traits>::MakeReadAbs32(
offset_t lo,
offset_t hi) {
// TODO(huangs): Reconcile the use of Win32-specific classes in ARM code!
Abs32RvaExtractorWin32 abs_rva_extractor(this->image_,
AbsoluteAddress(Traits::kBitness, 0),
this->abs32_locations_, lo, hi);
return std::make_unique<Abs32ReaderWin32>(std::move(abs_rva_extractor),
this->translator_);
}
template <class Traits>
std::unique_ptr<ReferenceWriter> DisassemblerElfArm<Traits>::MakeWriteAbs32(
MutableBufferView image) {
return std::make_unique<Abs32WriterWin32>(
image, AbsoluteAddress(Traits::kBitness, 0), this->translator_);
}
template <class TRAITS>
template <class ADDR_TRAITS>
std::unique_ptr<ReferenceReader> DisassemblerElfArm<TRAITS>::MakeReadRel32(
offset_t lower,
offset_t upper) {
return std::make_unique<Rel32ReaderArm<ADDR_TRAITS>>(
this->translator_, this->image_,
this->rel32_locations_table_[ADDR_TRAITS::addr_type], lower, upper);
}
template <class TRAITS>
template <class ADDR_TRAITS>
std::unique_ptr<ReferenceWriter> DisassemblerElfArm<TRAITS>::MakeWriteRel32(
MutableBufferView image) {
return std::make_unique<Rel32WriterArm<ADDR_TRAITS>>(this->translator_,
image);
}
template <class TRAITS>
template <class ADDR_TRAITS>
std::unique_ptr<ReferenceMixer> DisassemblerElfArm<TRAITS>::MakeMixRel32(
ConstBufferView src_image,
ConstBufferView dst_image) {
return std::make_unique<Rel32MixerArm<ADDR_TRAITS>>(src_image, dst_image);
}
/******** DisassemblerElfAArch32 ********/
DisassemblerElfAArch32::DisassemblerElfAArch32() = default;
DisassemblerElfAArch32::~DisassemblerElfAArch32() = default;
std::vector<ReferenceGroup> DisassemblerElfAArch32::MakeReferenceGroups()
const {
return {
{ReferenceTypeTraits{sizeof(Traits::Elf_Rel::r_offset),
TypeTag(AArch32ReferenceType::kReloc),
PoolTag(ArmReferencePool::kPoolReloc)},
&DisassemblerElfAArch32::MakeReadRelocs,
&DisassemblerElfAArch32::MakeWriteRelocs},
{ReferenceTypeTraits{Traits::kVAWidth,
TypeTag(AArch32ReferenceType::kAbs32),
PoolTag(ArmReferencePool::kPoolAbs32)},
&DisassemblerElfAArch32::MakeReadAbs32,
&DisassemblerElfAArch32::MakeWriteAbs32},
{ReferenceTypeTraits{4, TypeTag(AArch32ReferenceType::kRel32_A24),
PoolTag(ArmReferencePool::kPoolRel32)},
&DisassemblerElfAArch32::MakeReadRel32<
AArch32Rel32Translator::AddrTraits_A24>,
&DisassemblerElfAArch32::MakeWriteRel32<
AArch32Rel32Translator::AddrTraits_A24>,
&DisassemblerElfAArch32::MakeMixRel32<
AArch32Rel32Translator::AddrTraits_A24>},
{ReferenceTypeTraits{2, TypeTag(AArch32ReferenceType::kRel32_T8),
PoolTag(ArmReferencePool::kPoolRel32)},
&DisassemblerElfAArch32::MakeReadRel32<
AArch32Rel32Translator::AddrTraits_T8>,
&DisassemblerElfAArch32::MakeWriteRel32<
AArch32Rel32Translator::AddrTraits_T8>,
&DisassemblerElfAArch32::MakeMixRel32<
AArch32Rel32Translator::AddrTraits_T8>},
{ReferenceTypeTraits{2, TypeTag(AArch32ReferenceType::kRel32_T11),
PoolTag(ArmReferencePool::kPoolRel32)},
&DisassemblerElfAArch32::MakeReadRel32<
AArch32Rel32Translator::AddrTraits_T11>,
&DisassemblerElfAArch32::MakeWriteRel32<
AArch32Rel32Translator::AddrTraits_T11>,
&DisassemblerElfAArch32::MakeMixRel32<
AArch32Rel32Translator::AddrTraits_T11>},
{ReferenceTypeTraits{4, TypeTag(AArch32ReferenceType::kRel32_T20),
PoolTag(ArmReferencePool::kPoolRel32)},
&DisassemblerElfAArch32::MakeReadRel32<
AArch32Rel32Translator::AddrTraits_T20>,
&DisassemblerElfAArch32::MakeWriteRel32<
AArch32Rel32Translator::AddrTraits_T20>,
&DisassemblerElfAArch32::MakeMixRel32<
AArch32Rel32Translator::AddrTraits_T20>},
{ReferenceTypeTraits{4, TypeTag(AArch32ReferenceType::kRel32_T24),
PoolTag(ArmReferencePool::kPoolRel32)},
&DisassemblerElfAArch32::MakeReadRel32<
AArch32Rel32Translator::AddrTraits_T24>,
&DisassemblerElfAArch32::MakeWriteRel32<
AArch32Rel32Translator::AddrTraits_T24>,
&DisassemblerElfAArch32::MakeMixRel32<
AArch32Rel32Translator::AddrTraits_T24>},
};
}
std::unique_ptr<DisassemblerElfAArch32::Traits::Rel32FinderUse>
DisassemblerElfAArch32::MakeRel32Finder(
const typename Traits::Elf_Shdr& section) {
return std::make_unique<Rel32FinderAArch32>(image_, translator_,
IsExecSectionThumb2(section));
}
bool DisassemblerElfAArch32::IsExecSectionThumb2(
const typename Traits::Elf_Shdr& section) const {
// ARM mode requires 4-byte alignment.
if (section.sh_addr % 4 != 0 || section.sh_size % 4 != 0)
return true;
const uint8_t* first = image_.begin() + section.sh_offset;
const uint8_t* end = first + section.sh_size;
// Each instruction in 32-bit ARM (little-endian) looks like
// ?? ?? ?? X?,
// where X specifies conditional execution. X = 0xE represents AL = "ALways
// execute", and tends to appear very often. We use this as our main indicator
// to discern 32-bit ARM mode from THUMB2 mode.
size_t num = 0;
size_t den = 0;
for (const uint8_t* cur = first; cur < end; cur += 4) {
// |cur[3]| is within bounds because |end - cur| is a multiple of 4.
uint8_t maybe_cond = cur[3] & 0xF0;
if (maybe_cond == 0xE0)
++num;
++den;
}
if (den > 0) {
LOG(INFO) << "Section scan: " << num << " / " << den << " => "
<< base::StringPrintf("%.2f", num * 100.0 / den) << "%";
}
return num < den * kAArch32BitCondAlwaysDensityThreshold;
}
/******** DisassemblerElfAArch64 ********/
DisassemblerElfAArch64::DisassemblerElfAArch64() = default;
DisassemblerElfAArch64::~DisassemblerElfAArch64() = default;
std::vector<ReferenceGroup> DisassemblerElfAArch64::MakeReferenceGroups()
const {
return {
{ReferenceTypeTraits{sizeof(Traits::Elf_Rel::r_offset),
TypeTag(AArch64ReferenceType::kReloc),
PoolTag(ArmReferencePool::kPoolReloc)},
&DisassemblerElfAArch64::MakeReadRelocs,
&DisassemblerElfAArch64::MakeWriteRelocs},
{ReferenceTypeTraits{Traits::kVAWidth,
TypeTag(AArch64ReferenceType::kAbs32),
PoolTag(ArmReferencePool::kPoolAbs32)},
&DisassemblerElfAArch64::MakeReadAbs32,
&DisassemblerElfAArch64::MakeWriteAbs32},
{ReferenceTypeTraits{4, TypeTag(AArch64ReferenceType::kRel32_Immd14),
PoolTag(ArmReferencePool::kPoolRel32)},
&DisassemblerElfAArch64::MakeReadRel32<
AArch64Rel32Translator::AddrTraits_Immd14>,
&DisassemblerElfAArch64::MakeWriteRel32<
AArch64Rel32Translator::AddrTraits_Immd14>,
&DisassemblerElfAArch32::MakeMixRel32<
AArch64Rel32Translator::AddrTraits_Immd14>},
{ReferenceTypeTraits{4, TypeTag(AArch64ReferenceType::kRel32_Immd19),
PoolTag(ArmReferencePool::kPoolRel32)},
&DisassemblerElfAArch64::MakeReadRel32<
AArch64Rel32Translator::AddrTraits_Immd19>,
&DisassemblerElfAArch64::MakeWriteRel32<
AArch64Rel32Translator::AddrTraits_Immd19>,
&DisassemblerElfAArch32::MakeMixRel32<
AArch64Rel32Translator::AddrTraits_Immd19>},
{ReferenceTypeTraits{4, TypeTag(AArch64ReferenceType::kRel32_Immd26),
PoolTag(ArmReferencePool::kPoolRel32)},
&DisassemblerElfAArch64::MakeReadRel32<
AArch64Rel32Translator::AddrTraits_Immd26>,
&DisassemblerElfAArch64::MakeWriteRel32<
AArch64Rel32Translator::AddrTraits_Immd26>,
&DisassemblerElfAArch32::MakeMixRel32<
AArch64Rel32Translator::AddrTraits_Immd26>},
};
}
std::unique_ptr<DisassemblerElfAArch64::Traits::Rel32FinderUse>
DisassemblerElfAArch64::MakeRel32Finder(
const typename Traits::Elf_Shdr& section) {
return std::make_unique<Rel32FinderAArch64>(image_, translator_);
}
// Explicit instantiation for supported classes.
template class DisassemblerElfArm<ElfAArch32Traits>;
template class DisassemblerElfArm<ElfAArch64Traits>;
template bool DisassemblerElf<ElfAArch32Traits>::QuickDetect(
ConstBufferView image);
template bool DisassemblerElf<ElfAArch64Traits>::QuickDetect(
ConstBufferView image);
} // namespace zucchini
|