1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COMPONENTS_ZUCCHINI_DISASSEMBLER_ELF_H_
#define COMPONENTS_ZUCCHINI_DISASSEMBLER_ELF_H_
#include <stdint.h>
#include <algorithm>
#include <array>
#include <deque>
#include <memory>
#include <string>
#include <vector>
#include "base/memory/raw_ptr.h"
#include "components/zucchini/address_translator.h"
#include "components/zucchini/buffer_view.h"
#include "components/zucchini/disassembler.h"
#include "components/zucchini/image_utils.h"
#include "components/zucchini/rel32_finder.h"
#include "components/zucchini/rel32_utils.h"
#include "components/zucchini/reloc_elf.h"
#include "components/zucchini/type_elf.h"
namespace zucchini {
struct ArmReferencePool {
enum : uint8_t {
kPoolReloc,
kPoolAbs32,
kPoolRel32,
};
};
struct AArch32ReferenceType {
enum : uint8_t {
kReloc, // kPoolReloc
kAbs32, // kPoolAbs32
kRel32_A24, // kPoolRel32
kRel32_T8,
kRel32_T11,
kRel32_T20,
kRel32_T24,
kTypeCount
};
};
struct AArch64ReferenceType {
enum : uint8_t {
kReloc, // kPoolReloc
kAbs32, // kPoolAbs32
kRel32_Immd14, // kPoolRel32
kRel32_Immd19,
kRel32_Immd26,
kTypeCount
};
};
struct Elf32Traits {
static constexpr uint16_t kVersion = 1;
static constexpr Bitness kBitness = kBit32;
static constexpr elf::FileClass kIdentificationClass = elf::ELFCLASS32;
using Elf_Shdr = elf::Elf32_Shdr;
using Elf_Phdr = elf::Elf32_Phdr;
using Elf_Ehdr = elf::Elf32_Ehdr;
using Elf_Rel = elf::Elf32_Rel;
using Elf_Rela = elf::Elf32_Rela;
};
// Architecture-specific definitions.
struct Elf32IntelTraits : public Elf32Traits {
static constexpr ExecutableType kExeType = kExeTypeElfX86;
static const char kExeTypeString[];
static constexpr elf::MachineArchitecture kMachineValue = elf::EM_386;
static constexpr uint32_t kRelType = elf::R_386_RELATIVE;
enum : uint32_t { kVAWidth = 4 };
using Rel32FinderUse = Rel32FinderX86;
};
struct ElfAArch32Traits : public Elf32Traits {
static constexpr ExecutableType kExeType = kExeTypeElfAArch32;
static const char kExeTypeString[];
static constexpr elf::MachineArchitecture kMachineValue = elf::EM_ARM;
static constexpr uint32_t kRelType = elf::R_ARM_RELATIVE;
enum : uint32_t { kVAWidth = 4 };
using ArmReferenceType = AArch32ReferenceType;
using Rel32FinderUse = Rel32FinderAArch32;
};
struct Elf64Traits {
static constexpr uint16_t kVersion = 1;
static constexpr Bitness kBitness = kBit64;
static constexpr elf::FileClass kIdentificationClass = elf::ELFCLASS64;
using Elf_Shdr = elf::Elf64_Shdr;
using Elf_Phdr = elf::Elf64_Phdr;
using Elf_Ehdr = elf::Elf64_Ehdr;
using Elf_Rel = elf::Elf64_Rel;
using Elf_Rela = elf::Elf64_Rela;
};
// Architecture-specific definitions.
struct Elf64IntelTraits : public Elf64Traits {
static constexpr ExecutableType kExeType = kExeTypeElfX64;
static const char kExeTypeString[];
static constexpr elf::MachineArchitecture kMachineValue = elf::EM_X86_64;
static constexpr uint32_t kRelType = elf::R_X86_64_RELATIVE;
enum : uint32_t { kVAWidth = 8 };
using Rel32FinderUse = Rel32FinderX64;
};
struct ElfAArch64Traits : public Elf64Traits {
static constexpr ExecutableType kExeType = kExeTypeElfAArch64;
static const char kExeTypeString[];
static constexpr elf::MachineArchitecture kMachineValue = elf::EM_AARCH64;
// TODO(huangs): See if R_AARCH64_GLOB_DAT and R_AARCH64_JUMP_SLOT should be
// used.
static constexpr uint32_t kRelType = elf::R_AARCH64_RELATIVE;
enum : uint32_t { kVAWidth = 8 };
using ArmReferenceType = AArch64ReferenceType;
using Rel32FinderUse = Rel32FinderAArch64;
};
// Decides whether target |offset| is covered by a section in |sorted_headers|.
template <class ELF_SHDR>
bool IsTargetOffsetInElfSectionList(
const std::vector<const ELF_SHDR*>& sorted_headers,
offset_t offset) {
// Use binary search to search in a list of intervals, in a fashion similar to
// AddressTranslator::OffsetToUnit().
auto comp = [](offset_t offset, const ELF_SHDR* header) -> bool {
return offset < header->sh_offset;
};
auto it = std::upper_bound(sorted_headers.begin(), sorted_headers.end(),
offset, comp);
if (it == sorted_headers.begin())
return false;
--it;
// Just check offset without worrying about width, since this is a target.
// Not using RangeCovers() because |sh_offset| and |sh_size| can be 64-bit.
return offset >= (*it)->sh_offset &&
offset - (*it)->sh_offset < (*it)->sh_size;
}
// Disassembler for ELF.
template <class TRAITS>
class DisassemblerElf : public Disassembler {
public:
using Traits = TRAITS;
static constexpr uint16_t kVersion = Traits::kVersion;
// Applies quick checks to determine whether |image| *may* point to the start
// of an executable. Returns true iff the check passes.
static bool QuickDetect(ConstBufferView image);
DisassemblerElf(const DisassemblerElf&) = delete;
const DisassemblerElf& operator=(const DisassemblerElf&) = delete;
~DisassemblerElf() override;
// Disassembler:
ExecutableType GetExeType() const override;
std::string GetExeTypeString() const override;
std::vector<ReferenceGroup> MakeReferenceGroups() const override = 0;
// Read/Write functions that are common among different architectures.
std::unique_ptr<ReferenceReader> MakeReadRelocs(offset_t lo, offset_t hi);
std::unique_ptr<ReferenceWriter> MakeWriteRelocs(MutableBufferView image);
const AddressTranslator& translator() const { return translator_; }
protected:
friend Disassembler;
DisassemblerElf();
bool Parse(ConstBufferView image) override;
// Returns the supported Elf_Ehdr::e_machine enum.
static constexpr elf::MachineArchitecture supported_architecture() {
return Traits::kMachineValue;
}
// Returns the type to look for in the reloc section.
static constexpr uint32_t supported_relocation_type() {
return Traits::kRelType;
}
// Performs architecture-specific parsing of an executable section, to extract
// rel32 references.
virtual void ParseExecSection(const typename Traits::Elf_Shdr& section) = 0;
// Processes rel32 data after they are extracted from executable sections.
virtual void PostProcessRel32() = 0;
// Parses ELF header and section headers, and performs basic validation.
// Returns whether parsing was successful.
bool ParseHeader();
// Extracts and stores section headers that we need.
void ExtractInterestingSectionHeaders();
// Parsing functions that extract references from various sections.
void GetAbs32FromRelocSections();
void GetRel32FromCodeSections();
void ParseSections();
// Main ELF header.
raw_ptr<const typename Traits::Elf_Ehdr> header_ = nullptr;
// Section header table, ordered by section id.
elf::Elf32_Half sections_count_ = 0;
raw_ptr<const typename Traits::Elf_Shdr, AllowPtrArithmetic> sections_ =
nullptr;
// Program header table.
elf::Elf32_Half segments_count_ = 0;
raw_ptr<const typename Traits::Elf_Phdr, AllowPtrArithmetic> segments_ =
nullptr;
// Bit fields to store the role each section may play.
std::vector<int> section_judgements_;
// Translator between offsets and RVAs.
AddressTranslator translator_;
// Identity translator for abs32 translation.
AddressTranslator identity_translator_;
// Extracted relocation section dimensions data, sorted by file offsets.
std::vector<SectionDimensionsElf> reloc_section_dims_;
// Headers of executable sections, sorted by file offsets of the data each
// header points to.
std::vector<const typename Traits::Elf_Shdr*> exec_headers_;
// Sorted file offsets of abs32 locations.
std::deque<offset_t> abs32_locations_;
};
// Disassembler for ELF with Intel architectures.
template <class TRAITS>
class DisassemblerElfIntel : public DisassemblerElf<TRAITS> {
public:
using Traits = TRAITS;
enum ReferenceType : uint8_t { kReloc, kAbs32, kRel32, kTypeCount };
DisassemblerElfIntel();
DisassemblerElfIntel(const DisassemblerElfIntel&) = delete;
const DisassemblerElfIntel& operator=(const DisassemblerElfIntel&) = delete;
~DisassemblerElfIntel() override;
// Disassembler:
std::vector<ReferenceGroup> MakeReferenceGroups() const override;
// DisassemblerElf:
void ParseExecSection(const typename Traits::Elf_Shdr& section) override;
void PostProcessRel32() override;
// Specialized Read/Write functions.
std::unique_ptr<ReferenceReader> MakeReadAbs32(offset_t lo, offset_t hi);
std::unique_ptr<ReferenceWriter> MakeWriteAbs32(MutableBufferView image);
std::unique_ptr<ReferenceReader> MakeReadRel32(offset_t lo, offset_t hi);
std::unique_ptr<ReferenceWriter> MakeWriteRel32(MutableBufferView image);
private:
// Sorted file offsets of rel32 locations.
// Using std::deque to reduce peak memory footprint.
std::deque<offset_t> rel32_locations_;
};
using DisassemblerElfX86 = DisassemblerElfIntel<Elf32IntelTraits>;
using DisassemblerElfX64 = DisassemblerElfIntel<Elf64IntelTraits>;
// Disassembler for ELF with ARM architectures.
template <class TRAITS>
class DisassemblerElfArm : public DisassemblerElf<TRAITS> {
public:
using Traits = TRAITS;
DisassemblerElfArm();
DisassemblerElfArm(const DisassemblerElfArm&) = delete;
const DisassemblerElfArm& operator=(const DisassemblerElfArm&) = delete;
~DisassemblerElfArm() override;
// Determines whether target |offset| is in an executable section.
bool IsTargetOffsetInExecSection(offset_t offset) const;
// Creates an architecture-specific Rel32Finder for ParseExecSection.
virtual std::unique_ptr<typename Traits::Rel32FinderUse> MakeRel32Finder(
const typename Traits::Elf_Shdr& section) = 0;
// DisassemblerElf:
void ParseExecSection(const typename Traits::Elf_Shdr& section) override;
void PostProcessRel32() override;
// Specialized Read/Write functions.
std::unique_ptr<ReferenceReader> MakeReadAbs32(offset_t lo, offset_t hi);
std::unique_ptr<ReferenceWriter> MakeWriteAbs32(MutableBufferView image);
// Specialized Read/Write/Mix functions for different rel32 address types.
template <class ADDR_TRAITS>
std::unique_ptr<ReferenceReader> MakeReadRel32(offset_t lower,
offset_t upper);
template <class ADDR_TRAITS>
std::unique_ptr<ReferenceWriter> MakeWriteRel32(MutableBufferView image);
template <class ADDR_TRAITS>
std::unique_ptr<ReferenceMixer> MakeMixRel32(ConstBufferView old_image,
ConstBufferView new_image);
protected:
// Sorted file offsets of rel32 locations for each rel32 address type.
std::array<std::deque<offset_t>, Traits::ArmReferenceType::kTypeCount>
rel32_locations_table_;
};
// Disassembler for ELF with AArch32 (AKA ARM32).
class DisassemblerElfAArch32 : public DisassemblerElfArm<ElfAArch32Traits> {
public:
DisassemblerElfAArch32();
DisassemblerElfAArch32(const DisassemblerElfAArch32&) = delete;
const DisassemblerElfAArch32& operator=(const DisassemblerElfAArch32&) =
delete;
~DisassemblerElfAArch32() override;
// Disassembler:
std::vector<ReferenceGroup> MakeReferenceGroups() const override;
// DisassemblerElfArm:
std::unique_ptr<typename Traits::Rel32FinderUse> MakeRel32Finder(
const typename Traits::Elf_Shdr& section) override;
// Under the naive assumption that an executable section is entirely ARM mode
// or THUMB2 mode, this function implements heuristics to distinguish between
// the two. Returns true if section is THUMB2 mode; otherwise return false.
bool IsExecSectionThumb2(const typename Traits::Elf_Shdr& section) const;
};
// Disassembler for ELF with AArch64 (AKA ARM64).
class DisassemblerElfAArch64 : public DisassemblerElfArm<ElfAArch64Traits> {
public:
DisassemblerElfAArch64();
DisassemblerElfAArch64(const DisassemblerElfAArch64&) = delete;
const DisassemblerElfAArch64& operator=(const DisassemblerElfAArch64&) =
delete;
~DisassemblerElfAArch64() override;
// Disassembler:
std::vector<ReferenceGroup> MakeReferenceGroups() const override;
// DisassemblerElfArm:
std::unique_ptr<typename Traits::Rel32FinderUse> MakeRel32Finder(
const typename Traits::Elf_Shdr& section) override;
};
} // namespace zucchini
#endif // COMPONENTS_ZUCCHINI_DISASSEMBLER_ELF_H_
|