1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#ifndef COMPONENTS_ZUCCHINI_SUFFIX_ARRAY_H_
#define COMPONENTS_ZUCCHINI_SUFFIX_ARRAY_H_
#include <algorithm>
#include <iterator>
#include <numeric>
#include <vector>
#include "base/check.h"
#include "base/containers/adapters.h"
namespace zucchini {
// A functor class that implements the naive suffix sorting algorithm that uses
// std::sort with lexicographical compare. This is only meant as reference of
// the interface.
class NaiveSuffixSort {
public:
// Type requirements:
// |InputRng| is an input random access range.
// |KeyType| is an unsigned integer type.
// |SAIt| is a random access iterator with mutable references.
template <class InputRng, class KeyType, class SAIt>
// |str| is the input string on which suffix sort is applied.
// Characters found in |str| must be in the range [0, |key_bound|)
// |suffix_array| is the beginning of the destination range, which is at least
// as large as |str|.
void operator()(const InputRng& str,
KeyType key_bound,
SAIt suffix_array) const {
using size_type = typename SAIt::value_type;
size_type n = static_cast<size_type>(std::end(str) - std::begin(str));
// |suffix_array| is first filled with ordered indices of |str|.
// Those indices are then sorted with lexicographical comparisons in |str|.
std::iota(suffix_array, suffix_array + n, 0);
std::sort(suffix_array, suffix_array + n, [&str](size_type i, size_type j) {
return std::lexicographical_compare(std::begin(str) + i, std::end(str),
std::begin(str) + j, std::end(str));
});
}
};
// A functor class that implements suffix array induced sorting (SA-IS)
// algorithm with linear time and memory complexity,
// see http://ieeexplore.ieee.org/abstract/document/5582081/
class InducedSuffixSort {
public:
// Type requirements:
// |InputRng| is an input random access range.
// |KeyType| is an unsigned integer type.
// |SAIt| is a random access iterator with mutable values.
template <class InputRng, class KeyType, class SAIt>
// |str| is the input string on which suffix sort is applied.
// Characters found in |str| must be in the range [0, |key_bound|)
// |suffix_array| is the beginning of the destination range, which is at least
// as large as |str|.
void operator()(const InputRng& str,
KeyType key_bound,
SAIt suffix_array) const {
using value_type = typename InputRng::value_type;
using size_type = typename SAIt::value_type;
static_assert(std::is_unsigned<value_type>::value,
"SA-IS only supports input string with unsigned values");
static_assert(std::is_unsigned<KeyType>::value, "KeyType must be unsigned");
size_type n = static_cast<size_type>(std::end(str) - std::begin(str));
Implementation<size_type, KeyType>::SuffixSort(std::begin(str), n,
key_bound, suffix_array);
}
// Given string S of length n. We assume S is terminated by a unique sentinel
// $, which is considered as the smallest character. This sentinel does not
// exist in memory and is only treated implicitly, hence |n| does not count
// the sentinel in this implementation. We denote suf(S,i) the suffix formed
// by S[i..n).
// A suffix suf(S,i) is said to be S-type or L-type, if suf(S,i) < suf(S,i+1)
// or suf(S,i) > suf(S,i+1), respectively.
enum SLType : bool { SType, LType };
// A character S[i] is said to be S-type or L-type if the suffix suf(S,i) is
// S-type or L-type, respectively.
// A character S[i] is called LMS (leftmost S-type), if S[i] is S-type and
// S[i-1] is L-type. A suffix suf(S,i) is called LMS, if S[i] is an LMS
// character.
// A substring S[i..j) is an LMS-substring if
// (1) S[i] is LMS, S[j] is LMS or the sentinel $, and S[i..j) has no other
// LMS characters, or
// (2) S[i..j) is the sentinel $.
template <class SizeType, class KeyType>
struct Implementation {
static_assert(std::is_unsigned<SizeType>::value,
"SizeType must be unsigned");
static_assert(std::is_unsigned<KeyType>::value, "KeyType must be unsigned");
using size_type = SizeType;
using key_type = KeyType;
using iterator = typename std::vector<size_type>::iterator;
using const_iterator = typename std::vector<size_type>::const_iterator;
// Partition every suffix based on SL-type. Returns the number of LMS
// suffixes.
template <class StrIt>
static size_type BuildSLPartition(
StrIt str,
size_type length,
key_type key_bound,
std::vector<SLType>::reverse_iterator sl_partition_it) {
// We will count LMS suffixes (S to L-type or last S-type).
size_type lms_count = 0;
// |previous_type| is initialized to L-type to avoid counting an extra
// LMS suffix at the end
SLType previous_type = LType;
// Initialized to dummy, impossible key.
key_type previous_key = key_bound;
// We're travelling backward to determine the partition,
// as if we prepend one character at a time to the string, ex:
// b$ is L-type because b > $.
// ab$ is S-type because a < b, implying ab$ < b$.
// bab$ is L-type because b > a, implying bab$ > ab$.
// bbab$ is L-type, because bab$ was also L-type, implying bbab$ > bab$.
for (auto str_it = std::reverse_iterator<StrIt>(str + length);
str_it != std::reverse_iterator<StrIt>(str);
++str_it, ++sl_partition_it) {
key_type current_key = *str_it;
if (current_key > previous_key || previous_key == key_bound) {
// S[i] > S[i + 1] or S[i] is last character.
if (previous_type == SType)
// suf(S,i) is L-type and suf(S,i + 1) is S-type, therefore,
// suf(S,i+1) was a LMS suffix.
++lms_count;
previous_type = LType; // For next round.
} else if (current_key < previous_key) {
// S[i] < S[i + 1]
previous_type = SType; // For next round.
}
// Else, S[i] == S[i + 1]:
// The next character that differs determines the SL-type,
// so we reuse the last seen type.
*sl_partition_it = previous_type;
previous_key = current_key; // For next round.
}
return lms_count;
}
// Find indices of LMS suffixes and write result to |lms_indices|.
static void FindLmsSuffixes(const std::vector<SLType>& sl_partition,
iterator lms_indices) {
// |previous_type| is initialized to S-type to avoid counting an extra
// LMS suffix at the beginning
SLType previous_type = SType;
for (size_type i = 0; i < sl_partition.size(); ++i) {
if (sl_partition[i] == SType && previous_type == LType)
*lms_indices++ = i;
previous_type = sl_partition[i];
}
}
template <class StrIt>
static std::vector<size_type> MakeBucketCount(StrIt str,
size_type length,
key_type key_bound) {
// Occurrence of every unique character is counted in |buckets|
std::vector<size_type> buckets(static_cast<size_type>(key_bound));
for (auto it = str; it != str + length; ++it)
++buckets[*it];
return buckets;
}
// Apply induced sort from |lms_indices| to |suffix_array| associated with
// the string |str|.
template <class StrIt, class SAIt>
static void InducedSort(StrIt str,
size_type length,
const std::vector<SLType>& sl_partition,
const std::vector<size_type>& lms_indices,
const std::vector<size_type>& buckets,
SAIt suffix_array) {
// All indices are first marked as unset with the illegal value |length|.
std::fill(suffix_array, suffix_array + length, length);
// Used to mark bucket boundaries (head or end) as indices in str.
DCHECK(!buckets.empty());
std::vector<size_type> bucket_bounds(buckets.size());
// Step 1: Assign indices for LMS suffixes, populating the end of
// respective buckets but keeping relative order.
// Find the end of each bucket and write it to |bucket_bounds|.
std::partial_sum(buckets.begin(), buckets.end(), bucket_bounds.begin());
// Process each |lms_indices| backward, and assign them to the end of
// their respective buckets, so relative order is preserved.
for (size_t lms_index : base::Reversed(lms_indices)) {
key_type key = str[lms_index];
suffix_array[--bucket_bounds[key]] = lms_index;
}
// Step 2
// Scan forward |suffix_array|; for each modified suf(S,i) for which
// suf(S,SA(i) - 1) is L-type, place suf(S,SA(i) - 1) to the current
// head of the corresponding bucket and forward the bucket head to the
// right.
// Find the head of each bucket and write it to |bucket_bounds|. Since
// only LMS suffixes where inserted in |suffix_array| during Step 1,
// |bucket_bounds| does not contains the head of each bucket and needs to
// be updated.
bucket_bounds[0] = 0;
std::partial_sum(buckets.begin(), buckets.end() - 1,
bucket_bounds.begin() + 1);
// From Step 1, the sentinel $, which we treat implicitly, would have
// been placed at the beginning of |suffix_array|, since $ is always
// considered as the smallest character. We then have to deal with the
// previous (last) suffix.
if (sl_partition[length - 1] == LType) {
key_type key = str[length - 1];
suffix_array[bucket_bounds[key]++] = length - 1;
}
for (auto it = suffix_array; it != suffix_array + length; ++it) {
size_type suffix_index = *it;
// While the original algorithm marks unset suffixes with -1,
// we found that marking them with |length| is also possible and more
// convenient because we are working with unsigned integers.
if (suffix_index != length && suffix_index > 0 &&
sl_partition[--suffix_index] == LType) {
key_type key = str[suffix_index];
suffix_array[bucket_bounds[key]++] = suffix_index;
}
}
// Step 3
// Scan backward |suffix_array|; for each modified suf(S, i) for which
// suf(S,SA(i) - 1) is S-type, place suf(S,SA(i) - 1) to the current
// end of the corresponding bucket and forward the bucket head to the
// left.
// Find the end of each bucket and write it to |bucket_bounds|. Since
// only L-type suffixes where inserted in |suffix_array| during Step 2,
// |bucket_bounds| does not contain the end of each bucket and needs to
// be updated.
std::partial_sum(buckets.begin(), buckets.end(), bucket_bounds.begin());
for (auto it = std::reverse_iterator<SAIt>(suffix_array + length);
it != std::reverse_iterator<SAIt>(suffix_array); ++it) {
size_type suffix_index = *it;
if (suffix_index != length && suffix_index > 0 &&
sl_partition[--suffix_index] == SType) {
key_type key = str[suffix_index];
suffix_array[--bucket_bounds[key]] = suffix_index;
}
}
// Deals with the last suffix, because of the sentinel.
if (sl_partition[length - 1] == SType) {
key_type key = str[length - 1];
suffix_array[--bucket_bounds[key]] = length - 1;
}
}
// Given a string S starting at |str| with length |length|, an array
// starting at |substring_array| containing lexicographically ordered LMS
// terminated substring indices of S and an SL-Type partition |sl_partition|
// of S, assigns a unique label to every unique LMS substring. The sorted
// labels for all LMS substrings are written to |lms_str|, while the indices
// of LMS suffixes are written to |lms_indices|. In addition, returns the
// total number of unique labels.
template <class StrIt, class SAIt>
static size_type LabelLmsSubstrings(StrIt str,
size_type length,
const std::vector<SLType>& sl_partition,
SAIt suffix_array,
iterator lms_indices,
iterator lms_str) {
// Labelling starts at 0.
size_type label = 0;
// |previous_lms| is initialized to 0 to indicate it is unset.
// Note that suf(S,0) is never a LMS suffix. Substrings will be visited in
// lexicographical order.
size_type previous_lms = 0;
for (auto it = suffix_array; it != suffix_array + length; ++it) {
if (*it > 0 && sl_partition[*it] == SType &&
sl_partition[*it - 1] == LType) {
// suf(S, *it) is a LMS suffix.
size_type current_lms = *it;
if (previous_lms != 0) {
// There was a previous LMS suffix. Check if the current LMS
// substring is equal to the previous one.
SLType current_lms_type = SType;
SLType previous_lms_type = SType;
for (size_type k = 0;; ++k) {
// |current_lms_end| and |previous_lms_end| denote whether we have
// reached the end of the current and previous LMS substring,
// respectively
bool current_lms_end = false;
bool previous_lms_end = false;
// Check for both previous and current substring ends.
// Note that it is more convenient to check if
// suf(S,current_lms + k) is an LMS suffix than to retrieve it
// from lms_indices.
if (current_lms + k >= length ||
(current_lms_type == LType &&
sl_partition[current_lms + k] == SType)) {
current_lms_end = true;
}
if (previous_lms + k >= length ||
(previous_lms_type == LType &&
sl_partition[previous_lms + k] == SType)) {
previous_lms_end = true;
}
if (current_lms_end && previous_lms_end) {
break; // Previous and current substrings are identical.
} else if (current_lms_end != previous_lms_end ||
str[current_lms + k] != str[previous_lms + k]) {
// Previous and current substrings differ, a new label is used.
++label;
break;
}
current_lms_type = sl_partition[current_lms + k];
previous_lms_type = sl_partition[previous_lms + k];
}
}
*lms_indices++ = *it;
*lms_str++ = label;
previous_lms = current_lms;
}
}
return label + 1;
}
// Implementation of the SA-IS algorithm. |str| must be a random access
// iterator pointing at the beginning of S with length |length|. The result
// is writtend in |suffix_array|, a random access iterator.
template <class StrIt, class SAIt>
static void SuffixSort(StrIt str,
size_type length,
key_type key_bound,
SAIt suffix_array) {
if (length == 1)
*suffix_array = 0;
if (length < 2)
return;
std::vector<SLType> sl_partition(length);
size_type lms_count =
BuildSLPartition(str, length, key_bound, sl_partition.rbegin());
std::vector<size_type> lms_indices(lms_count);
FindLmsSuffixes(sl_partition, lms_indices.begin());
std::vector<size_type> buckets = MakeBucketCount(str, length, key_bound);
if (lms_indices.size() > 1) {
// Given |lms_indices| in the same order they appear in |str|, induce
// LMS substrings relative order and write result to |suffix_array|.
InducedSort(str, length, sl_partition, lms_indices, buckets,
suffix_array);
std::vector<size_type> lms_str(lms_indices.size());
// Given LMS substrings in relative order found in |suffix_array|,
// map LMS substrings to unique labels to form a new string, |lms_str|.
size_type label_count =
LabelLmsSubstrings(str, length, sl_partition, suffix_array,
lms_indices.begin(), lms_str.begin());
if (label_count < lms_str.size()) {
// Reorder |lms_str| to have LMS suffixes in the same order they
// appear in |str|.
for (size_type i = 0; i < lms_indices.size(); ++i)
suffix_array[lms_indices[i]] = lms_str[i];
SLType previous_type = SType;
for (size_type i = 0, j = 0; i < sl_partition.size(); ++i) {
if (sl_partition[i] == SType && previous_type == LType) {
lms_str[j] = suffix_array[i];
lms_indices[j++] = i;
}
previous_type = sl_partition[i];
}
// Recursively apply SuffixSort on |lms_str|, which is formed from
// labeled LMS suffixes in the same order they appear in |str|.
// Note that |KeyType| will be size_type because |lms_str| contains
// indices. |lms_str| is at most half the length of |str|.
Implementation<size_type, size_type>::SuffixSort(
lms_str.begin(), static_cast<size_type>(lms_str.size()),
label_count, suffix_array);
// Map LMS labels back to indices in |str| and write result to
// |lms_indices|. We're using |suffix_array| as a temporary buffer.
for (size_type i = 0; i < lms_indices.size(); ++i)
suffix_array[i] = lms_indices[suffix_array[i]];
std::copy_n(suffix_array, lms_indices.size(), lms_indices.begin());
// At this point, |lms_indices| contains sorted LMS suffixes of |str|.
}
}
// Given |lms_indices| where LMS suffixes are sorted, induce the full
// order of suffixes in |str|.
InducedSort(str, length, sl_partition, lms_indices, buckets,
suffix_array);
}
Implementation() = delete;
Implementation(const Implementation&) = delete;
const Implementation& operator=(const Implementation&) = delete;
};
};
// Generates a sorted suffix array for the input string |str| using the functor
// |Algorithm| which provides an interface equivalent to NaiveSuffixSort.
/// Characters found in |str| are assumed to be in range [0, |key_bound|).
// Returns the suffix array as a vector.
// |StrRng| is an input random access range.
// |KeyType| is an unsigned integer type.
template <class Algorithm, class StrRng, class KeyType>
std::vector<typename StrRng::size_type> MakeSuffixArray(const StrRng& str,
KeyType key_bound) {
Algorithm sort;
std::vector<typename StrRng::size_type> suffix_array(str.end() - str.begin());
sort(str, key_bound, suffix_array.begin());
return suffix_array;
}
// Type requirements:
// |SARng| is an input random access range.
// |StrIt1| is a random access iterator.
// |StrIt2| is a forward iterator.
template <class SARng, class StrIt1, class StrIt2>
// Lexicographical lower bound using binary search for
// [|str2_first|, |str2_last|) in the suffix array |suffix_array| of a string
// starting at |str1_first|. This does not necessarily return the index of
// the longest matching substring.
auto SuffixLowerBound(const SARng& suffix_array,
StrIt1 str1_first,
StrIt2 str2_first,
StrIt2 str2_last) -> decltype(std::begin(suffix_array)) {
using size_type = typename SARng::value_type;
size_t n = std::end(suffix_array) - std::begin(suffix_array);
auto it = std::lower_bound(
std::begin(suffix_array), std::end(suffix_array), str2_first,
[str1_first, str2_last, n](size_type a, StrIt2 b) {
return std::lexicographical_compare(str1_first + a, str1_first + n, b,
str2_last);
});
return it;
}
} // namespace zucchini
#endif // COMPONENTS_ZUCCHINI_SUFFIX_ARRAY_H_
|