1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "crypto/hmac.h"
#include <stddef.h>
#include <algorithm>
#include <string>
#include "base/check.h"
#include "base/check_op.h"
#include "base/notreached.h"
#include "base/stl_util.h"
#include "crypto/openssl_util.h"
#include "crypto/secure_util.h"
#include "third_party/boringssl/src/include/openssl/hmac.h"
namespace crypto {
HMAC::HMAC(HashAlgorithm hash_alg) : hash_alg_(hash_alg), initialized_(false) {
// Only SHA-1 and SHA-256 hash algorithms are supported now.
DCHECK(hash_alg_ == SHA1 || hash_alg_ == SHA256);
}
HMAC::~HMAC() {
// Zero out key copy.
key_.assign(key_.size(), 0);
base::STLClearObject(&key_);
}
size_t HMAC::DigestLength() const {
switch (hash_alg_) {
case SHA1:
return 20;
case SHA256:
return 32;
default:
NOTREACHED();
}
}
bool HMAC::Init(const unsigned char* key, size_t key_length) {
// Init must not be called more than once on the same HMAC object.
DCHECK(!initialized_);
initialized_ = true;
key_.assign(key, key + key_length);
return true;
}
bool HMAC::Sign(std::string_view data,
unsigned char* digest,
size_t digest_length) const {
return Sign(base::as_byte_span(data), base::span(digest, digest_length));
}
bool HMAC::Sign(base::span<const uint8_t> data,
base::span<uint8_t> digest) const {
DCHECK(initialized_);
if (digest.size() > DigestLength())
return false;
ScopedOpenSSLSafeSizeBuffer<EVP_MAX_MD_SIZE> result(digest.data(),
digest.size());
return !!::HMAC(hash_alg_ == SHA1 ? EVP_sha1() : EVP_sha256(), key_.data(),
key_.size(), data.data(), data.size(), result.safe_buffer(),
nullptr);
}
bool HMAC::Verify(std::string_view data, std::string_view digest) const {
return Verify(base::as_byte_span(data), base::as_byte_span(digest));
}
bool HMAC::Verify(base::span<const uint8_t> data,
base::span<const uint8_t> digest) const {
if (digest.size() != DigestLength())
return false;
return VerifyTruncated(data, digest);
}
bool HMAC::VerifyTruncated(std::string_view data,
std::string_view digest) const {
return VerifyTruncated(base::as_byte_span(data), base::as_byte_span(digest));
}
bool HMAC::VerifyTruncated(base::span<const uint8_t> data,
base::span<const uint8_t> digest) const {
if (digest.empty())
return false;
size_t digest_length = DigestLength();
if (digest.size() > digest_length)
return false;
std::array<uint8_t, EVP_MAX_MD_SIZE> computed_buffer;
auto computed_digest = base::span(computed_buffer).first(digest.size());
if (!Sign(data, computed_digest)) {
return false;
}
return SecureMemEqual(digest, computed_digest);
}
namespace hmac {
namespace {
const EVP_MD* EVPMDForHashKind(crypto::hash::HashKind kind) {
switch (kind) {
case crypto::hash::HashKind::kSha1:
return EVP_sha1();
case crypto::hash::HashKind::kSha256:
return EVP_sha256();
case crypto::hash::HashKind::kSha384:
return EVP_sha384();
case crypto::hash::HashKind::kSha512:
return EVP_sha512();
}
NOTREACHED();
}
} // namespace
void Sign(crypto::hash::HashKind kind,
base::span<const uint8_t> key,
base::span<const uint8_t> data,
base::span<uint8_t> hmac) {
const EVP_MD* md = EVPMDForHashKind(kind);
CHECK_EQ(hmac.size(), EVP_MD_size(md));
bssl::ScopedHMAC_CTX ctx;
CHECK(HMAC_Init_ex(ctx.get(), key.data(), key.size(), EVPMDForHashKind(kind),
nullptr));
CHECK(HMAC_Update(ctx.get(), data.data(), data.size()));
CHECK(HMAC_Final(ctx.get(), hmac.data(), nullptr));
}
bool Verify(crypto::hash::HashKind kind,
base::span<const uint8_t> key,
base::span<const uint8_t> data,
base::span<const uint8_t> hmac) {
const EVP_MD* md = EVPMDForHashKind(kind);
CHECK_EQ(hmac.size(), EVP_MD_size(md));
std::array<uint8_t, EVP_MAX_MD_SIZE> computed_buf;
base::span<uint8_t> computed =
base::span(computed_buf).first(EVP_MD_size(md));
Sign(kind, key, data, computed);
return crypto::SecureMemEqual(computed, hmac);
}
std::array<uint8_t, crypto::hash::kSha1Size> SignSha1(
base::span<const uint8_t> key,
base::span<const uint8_t> data) {
std::array<uint8_t, crypto::hash::kSha1Size> result;
Sign(crypto::hash::HashKind::kSha1, key, data, result);
return result;
}
std::array<uint8_t, crypto::hash::kSha256Size> SignSha256(
base::span<const uint8_t> key,
base::span<const uint8_t> data) {
std::array<uint8_t, crypto::hash::kSha256Size> result;
Sign(crypto::hash::HashKind::kSha256, key, data, result);
return result;
}
std::array<uint8_t, crypto::hash::kSha512Size> SignSha512(
base::span<const uint8_t> key,
base::span<const uint8_t> data) {
std::array<uint8_t, crypto::hash::kSha512Size> result;
Sign(crypto::hash::HashKind::kSha512, key, data, result);
return result;
}
bool VerifySha1(base::span<const uint8_t> key,
base::span<const uint8_t> data,
base::span<const uint8_t, 20> hmac) {
return Verify(crypto::hash::HashKind::kSha1, key, data, hmac);
}
bool VerifySha256(base::span<const uint8_t> key,
base::span<const uint8_t> data,
base::span<const uint8_t, 32> hmac) {
return Verify(crypto::hash::HashKind::kSha256, key, data, hmac);
}
bool VerifySha512(base::span<const uint8_t> key,
base::span<const uint8_t> data,
base::span<const uint8_t, 64> hmac) {
return Verify(crypto::hash::HashKind::kSha512, key, data, hmac);
}
} // namespace hmac
} // namespace crypto
|