1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CRYPTO_PROCESS_BOUND_STRING_H_
#define CRYPTO_PROCESS_BOUND_STRING_H_
#include <string>
#include <vector>
#include "base/check.h"
#include "base/containers/span.h"
#include "base/feature_list.h"
#include "base/gtest_prod_util.h"
#include "crypto/crypto_export.h"
#include "crypto/features.h"
namespace crypto {
namespace internal {
// Maybe round the size of the data to a size needed for the encrypt or decrypt
// operation. Returns the new size, or `size` if no rounding up is needed.
CRYPTO_EXPORT size_t MaybeRoundUp(size_t size);
// Maybe encrypt a buffer, in place. Returns true if the buffer was successfully
// encrypted or false if unsupported by the platform or failed to encrypt.
CRYPTO_EXPORT bool MaybeEncryptBuffer(base::span<uint8_t> buffer);
// Maybe decrypt a buffer, in place. Returns true if the buffer was successfully
// decrypted or false if unsupported by the platform or failed to decrypt.
CRYPTO_EXPORT bool MaybeDecryptBuffer(base::span<uint8_t> buffer);
// Securely zero a buffer using a platform specific method.
CRYPTO_EXPORT void SecureZeroBuffer(base::span<uint8_t> buffer);
} // namespace internal
// SecureAllocator is used by the SecureString variants below to clear the
// memory when the string moves out of scope.
template <typename T>
struct CRYPTO_EXPORT SecureAllocator {
using value_type = T;
SecureAllocator() noexcept = default;
T* allocate(std::size_t n) { return std::allocator<T>().allocate(n); }
void deallocate(T* p, std::size_t n) noexcept {
if (p) {
// SAFETY: deallocate() has a fixed prototype from the std library, and
// passes an unsafe buffer, so convert it to a base::span here.
internal::SecureZeroBuffer(UNSAFE_BUFFERS(
base::span<uint8_t>(reinterpret_cast<uint8_t*>(p), n * sizeof(T))));
std::allocator<T>().deallocate(p, n);
}
}
};
// On supported platforms, a process bound string cannot have its content read
// by other processes on the system. On unsupported platforms it provides no
// difference over a native string except it does more copies.
template <typename StringType>
class CRYPTO_EXPORT ProcessBound {
public:
using CharType = typename StringType::value_type;
ProcessBound(const ProcessBound& other) = default;
ProcessBound(ProcessBound&& other) = default;
ProcessBound& operator=(const ProcessBound& other) = default;
ProcessBound& operator=(ProcessBound&& other) = default;
// Create a process bound string. Takes a copy of the string passed in.
explicit ProcessBound(const StringType& value)
: original_size_(value.size()) {
std::vector<CharType> data(value.begin(), value.end());
if (base::FeatureList::IsEnabled(
crypto::features::kProcessBoundStringEncryption)) {
data.resize(internal::MaybeRoundUp(data.size()));
encrypted_ =
internal::MaybeEncryptBuffer(base::as_writable_byte_span(data));
}
maybe_encrypted_data_ = std::move(data);
}
~ProcessBound() = default;
// Return the decrypted string.
StringType value() const { return StringType(secure_value()); }
// Return the decrypted string as a string that attempts to wipe itself after
// use. Prefer over calling `value()` if caller can support it.
std::basic_string<CharType,
std::char_traits<CharType>,
SecureAllocator<CharType>>
secure_value() const {
if (!encrypted_) {
return std::basic_string<CharType, std::char_traits<CharType>,
SecureAllocator<CharType>>(
maybe_encrypted_data_.data(), original_size_);
}
// Copy to decrypt in-place.
std::basic_string<CharType, std::char_traits<CharType>,
SecureAllocator<CharType>>
decrypted(maybe_encrypted_data_.begin(), maybe_encrypted_data_.end());
// Attempt to avoid Small String Optimization (SSO) by reserving a larger
// allocation than the SSO default, forcing a dynamic allocation to occur,
// before any decrypted data is written to the string. This value was
// determined empirically.
constexpr size_t kSSOMaxSize = 64u;
if (decrypted.size() < kSSOMaxSize) {
decrypted.reserve(kSSOMaxSize);
}
CHECK(internal::MaybeDecryptBuffer(base::as_writable_byte_span(decrypted)));
decrypted.resize(original_size_);
return decrypted;
}
size_t size() const { return original_size_; }
bool empty() const { return size() == 0; }
private:
FRIEND_TEST_ALL_PREFIXES(ProcessBoundFeatureTest, Encryption);
std::vector<CharType> maybe_encrypted_data_;
size_t original_size_;
bool encrypted_ = false;
};
using ProcessBoundString = ProcessBound<std::string>;
using ProcessBoundWString = ProcessBound<std::wstring>;
using ProcessBoundU16String = ProcessBound<std::u16string>;
// SecureString variants here attempt to clean memory for the string data when
// the string goes out of scope. However, while in memory it can be read, and if
// copied somewhere else, the memory can also be read. This is a defense in
// depth hardening and not meant to provide strong security guarantees.
using SecureString =
std::basic_string<std::string::value_type,
std::char_traits<std::string::value_type>,
SecureAllocator<std::string::value_type>>;
using SecureWString =
std::basic_string<std::wstring::value_type,
std::char_traits<std::wstring::value_type>,
SecureAllocator<std::wstring::value_type>>;
using SecureU16String =
std::basic_string<std::u16string::value_type,
std::char_traits<std::u16string::value_type>,
SecureAllocator<std::u16string::value_type>>;
} // namespace crypto
#endif // CRYPTO_PROCESS_BOUND_STRING_H_
|