1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CRYPTO_UNEXPORTABLE_KEY_H_
#define CRYPTO_UNEXPORTABLE_KEY_H_
#include <memory>
#include <optional>
#include "build/build_config.h"
#include "crypto/crypto_export.h"
#include "crypto/signature_verifier.h"
#if BUILDFLAG(IS_MAC)
#import <Security/Security.h>
#endif // BUILDFLAG(IS_MAC)
namespace crypto {
// UnexportableSigningKey provides a hardware-backed signing oracle on platforms
// that support it. Current support is:
// Windows: RSA_PKCS1_SHA256 via TPM 1.2+ and ECDSA_SHA256 via TPM 2.0.
// macOS: ECDSA_SHA256 via the Secure Enclave.
// Tests: ECDSA_SHA256 via ScopedMockUnexportableSigningKeyForTesting.
//
// See also //components/unexportable_keys for a higher-level key management
// API.
class CRYPTO_EXPORT UnexportableSigningKey {
public:
virtual ~UnexportableSigningKey();
// Algorithm returns the algorithm of the key in this object.
virtual SignatureVerifier::SignatureAlgorithm Algorithm() const = 0;
// GetSubjectPublicKeyInfo returns an SPKI that contains the public key of
// this object.
virtual std::vector<uint8_t> GetSubjectPublicKeyInfo() const = 0;
// GetWrappedKey returns a handle to the private key of this object. Usually,
// it is the private key encrypted to a key that is kept in hardware and the
// unencrypted private key never exists in the CPU's memory, hence the name.
// On Mac, this is instead a hash of the public key and the wrapped key
// material is stored in the Keychain.
//
// A key handle may be used with a future instance of this code to recreate
// the key so long as it's running on the same computer.
//
// Note: on Windows it is possible to export this wrapped key off machine, but
// it must be sealed with an AEAD first. The wrapped key may contain machine
// identifiers and other values that you wouldn't want to export. Additionally
// |UnexportableKeyProvider::FromWrappedSigningKey| should not be presented
// attacked-controlled input and the AEAD would serve to authenticate the
// wrapped key.
virtual std::vector<uint8_t> GetWrappedKey() const = 0;
// SignSlowly returns a signature of |data|, or |nullopt| if an error occurs
// during signing.
//
// Note: this may take a second or more to run.
virtual std::optional<std::vector<uint8_t>> SignSlowly(
base::span<const uint8_t> data) = 0;
// Returns true if the underlying key is stored in "hardware". Something like
// ARM TrustZone would count as hardware for these purposes. Ideally all
// implementations of this class would return true here, because software
// implementations aren't really "unexportable", but a software implementation
// does exist.
virtual bool IsHardwareBacked() const;
#if BUILDFLAG(IS_MAC)
// Returns the underlying reference to a Keychain key owned by the current
// instance.
virtual SecKeyRef GetSecKeyRef() const = 0;
#endif // BUILDFLAG(IS_MAC)
};
// UnexportableKeyProvider creates |UnexportableSigningKey|s.
class CRYPTO_EXPORT UnexportableKeyProvider {
public:
virtual ~UnexportableKeyProvider();
// Platform-specific configuration parameters for the provider.
struct Config {
#if BUILDFLAG(IS_MAC)
// Determines the level of user verification needed to sign with the key.
// https://developer.apple.com/documentation/security/secaccesscontrolcreateflags?language=objc
enum class AccessControl {
// No access control. User presence is not required to access this secret.
kNone,
// Either biometry or the local account password are required to access
// this secret. This is equivalent to kSecAccessControlUserPresence.
// Note that if you set this and choose not to pass an authenticated
// LAContext when signing, macOS will prompt the user for biometrics and
// the thread will block until that resolves.
kUserPresence,
};
// The keychain access group the key is shared with. The binary must be
// codesigned with the corresponding entitlement.
// https://developer.apple.com/documentation/bundleresources/entitlements/keychain-access-groups?language=objc
// This must be set to a non empty value when using unexportable keys on
// macOS.
std::string keychain_access_group;
// An optional application tag that will be set for all keys created by this
// provider. If non empty, this should uniquely identify a group of related
// keys, and can be used to query or delete all credentials with the same
// tag.
// https://developer.apple.com/documentation/security/ksecattrapplicationtag?language=objc
std::string application_tag;
// The access control set for keys created by the provider.
AccessControl access_control = AccessControl::kNone;
#endif // BUILDFLAG(IS_MAC)
};
// SelectAlgorithm returns which signature algorithm from
// |acceptable_algorithms| would be used if |acceptable_algorithms| was passed
// to |GenerateSigningKeySlowly|.
virtual std::optional<SignatureVerifier::SignatureAlgorithm> SelectAlgorithm(
base::span<const SignatureVerifier::SignatureAlgorithm>
acceptable_algorithms) = 0;
// GenerateSigningKeySlowly creates a new opaque signing key in hardware. The
// first supported value of |acceptable_algorithms| determines the type of the
// key. Returns nullptr if no supported hardware exists, if no value in
// |acceptable_algorithms| is supported, or if there was an error creating the
// key.
//
// Note: this may take one or two seconds to run.
virtual std::unique_ptr<UnexportableSigningKey> GenerateSigningKeySlowly(
base::span<const SignatureVerifier::SignatureAlgorithm>
acceptable_algorithms) = 0;
// FromWrappedSigningKey creates an |UnexportableSigningKey| from
// |wrapped_key|, which must have resulted from calling |GetWrappedKey| on a
// previous instance of |UnexportableSigningKey|. Returns nullptr if
// |wrapped_key| cannot be imported.
//
// Note: this may take up to a second.
//
// Note: do not call this with attacker-controlled data. The underlying
// interfaces to the secure hardware may not be robust. See |GetWrappedKey|.
virtual std::unique_ptr<UnexportableSigningKey> FromWrappedSigningKeySlowly(
base::span<const uint8_t> wrapped_key) = 0;
// Unexportable key implementations may be stateful. This is the case for
// macOS. |DeleteSigningKey| deletes all state associated with a given signing
// key on such implementations. For stateless implementations, this is a
// no-op.
// Returns true on successful deletion, false otherwise.
// This can sometimes block, and therefore must not be called from the UI
// thread.
virtual bool DeleteSigningKeySlowly(
base::span<const uint8_t> wrapped_key) = 0;
};
// This is an experimental API as it uses an unofficial Windows API.
// The current implementation is here to gather metrics only. It should not be
// used outside of metrics gathering without knowledge of crypto OWNERS.
//
// UnexportableSigningKey provides a software-backed signing oracle based in a
// specialized virtual machine on platforms that support it. Current support is:
// Windows: RSA_PKCS1_SHA256 and ECDSA_SHA256.
//
// These keys differs from UnexportableSigningKey in several ways:
// - They are backed not by hardware, but by a specialized limited virtual
// machine resistant to attacks.
// - The latency of operations are expected to be about 100 times less, making
// them much more practical in cases that would otherwise disrupt the user
// experience.
// - The keys are stored in the virtual machine by name, this namespace is
// shared by all applications and there is a limited number of available keys
// (~65k from testing).
//
// For more info see:
// https://learn.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
class CRYPTO_EXPORT VirtualUnexportableSigningKey {
public:
virtual ~VirtualUnexportableSigningKey();
// Algorithm returns the algorithm of the key in this object.
virtual SignatureVerifier::SignatureAlgorithm Algorithm() const = 0;
// GetSubjectPublicKeyInfo returns an SPKI that contains the public key of
// this object.
virtual std::vector<uint8_t> GetSubjectPublicKeyInfo() const = 0;
// GetKeyName may be used with a future instance of this code to recreate
// the key so long as it's running on the same computer.
//
// Note: All local applications can enumerate all keys on device and
// recreate them. Private keys can also be exported with the first HANDLE
// after creation.
virtual std::string GetKeyName() const = 0;
// Sign returns a signature of |data|, or |nullopt| if an error occurs
// during signing.
//
// Note: this is expected to be under 10ms.
virtual std::optional<std::vector<uint8_t>> Sign(
base::span<const uint8_t> data) = 0;
// Deletes the key from storage in the virtual machine. As the virtual machine
// has limited storage shared by all applications it is important to delete
// keys no longer in use.
virtual void DeleteKey() = 0;
};
// VirtualUnexportableKeyProvider creates |VirtualUnexportableSigningKey|s.
class CRYPTO_EXPORT VirtualUnexportableKeyProvider {
public:
virtual ~VirtualUnexportableKeyProvider();
// SelectAlgorithm returns which signature algorithm from
// |acceptable_algorithms| would be used if |acceptable_algorithms| was passed
// to |GenerateSigningKeySlowly|.
virtual std::optional<SignatureVerifier::SignatureAlgorithm> SelectAlgorithm(
base::span<const SignatureVerifier::SignatureAlgorithm>
acceptable_algorithms) = 0;
// GenerateSigningKey creates a new opaque signing key in a virtual machine.
// The first supported value of |acceptable_algorithms| determines the type of
// the key. Returns nullptr if it is not supported in the operating system,
// if no value in |acceptable_algorithms| is supported, or if there was an
// error creating the key.
// As the namespace is shared between all applications care should be taken to
// use a name that will not already be used by other applications. If a new
// key is created with the same name as a current key the creation will fail.
// Do not create a key with NULL or empty string as the name.
//
// Note: This may take milliseconds to run.
virtual std::unique_ptr<VirtualUnexportableSigningKey> GenerateSigningKey(
base::span<const SignatureVerifier::SignatureAlgorithm>
acceptable_algorithms,
std::string name) = 0;
// FromKeyName creates an |UnexportableSigningKey| from |name|, which is the
// name used to create the key. Returns nullptr if |name| cannot be imported.
//
// Note: This may take milliseconds to run.
virtual std::unique_ptr<VirtualUnexportableSigningKey> FromKeyName(
std::string name) = 0;
};
// GetUnexportableKeyProvider returns an |UnexportableKeyProvider|
// for the current platform, or nullptr if there isn't one. This can be called
// from any thread but, in tests, but be sequenced with
// |SetUnexportableSigningKeyProvider|.
CRYPTO_EXPORT std::unique_ptr<UnexportableKeyProvider>
GetUnexportableKeyProvider(UnexportableKeyProvider::Config config);
// GetMicrosoftSoftwareUnexportableKeyProvider returns an
// |UnexportableKeyProvider| that is backed by the Microsoft Software Key
// Storage Provider. Keys stored in this fashion are available to both the
// software that created them, and any software running locally with
// administrative privileges.
// Microsoft Software keys are less secure than TPM backed keys, so
// |GetUnexportableKeyProvider| should be preferred, but they are more widely
// available.
CRYPTO_EXPORT std::unique_ptr<UnexportableKeyProvider>
GetMicrosoftSoftwareUnexportableKeyProvider();
// GetVirtualUnexportableKeyProvider_DO_NOT_USE_METRICS_ONLY returns a
// |VirtualUnexportableKeyProvider| for the current platform, or nullptr if
// there isn't one. This should currently only be used for metrics gathering.
CRYPTO_EXPORT std::unique_ptr<VirtualUnexportableKeyProvider>
GetVirtualUnexportableKeyProvider_DO_NOT_USE_METRICS_ONLY();
// `GetSoftwareUnsecureUnexportableKeyProvider()` returns a fake software
// implementation of `UnexportableKeyProvider` that can be used on platforms
// that do not have a native secure implementation.
// This should be used for development purposes only since these keys are not
// backed by hardware and are not stored securely.
CRYPTO_EXPORT std::unique_ptr<UnexportableKeyProvider>
GetSoftwareUnsecureUnexportableKeyProvider();
namespace internal {
CRYPTO_EXPORT bool HasScopedUnexportableKeyProvider();
CRYPTO_EXPORT void SetUnexportableKeyProviderForTesting(
std::unique_ptr<UnexportableKeyProvider> (*func)());
} // namespace internal
} // namespace crypto
#endif // CRYPTO_UNEXPORTABLE_KEY_H_
|