1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/unexportable_key_metrics.h"
#include <memory>
#include "base/feature_list.h"
#include "base/metrics/histogram_functions.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "base/timer/elapsed_timer.h"
#include "crypto/unexportable_key.h"
namespace crypto {
namespace {
enum class KeyType {
kHardwareKey,
kVirtualizedKey,
};
const SignatureVerifier::SignatureAlgorithm kAllAlgorithms[] = {
SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256,
SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256,
};
constexpr char kTestKeyName[] = "ChromeMetricsTestKey";
// Leaving HW empty will keep the existing metric as is today.
std::string GetHistogramPrefixForKeyType(KeyType type) {
switch (type) {
case KeyType::kHardwareKey:
return "";
case KeyType::kVirtualizedKey:
return "Virtual.";
}
}
std::string GetHistogramSuffixForAlgo(internal::TPMSupport algo) {
switch (algo) {
case internal::TPMSupport::kECDSA:
return "ECDSA";
case internal::TPMSupport::kRSA:
return "RSA";
case internal::TPMSupport::kNone:
return "";
}
return "";
}
internal::TPMType GetSupportedTpm(internal::TPMSupport hw,
internal::TPMSupport virt) {
if (hw != internal::TPMSupport::kNone &&
virt != internal::TPMSupport::kNone) {
return internal::TPMType::kBoth;
}
if (hw != internal::TPMSupport::kNone) {
return internal::TPMType::kHW;
}
// This is not expected
if (virt != internal::TPMSupport::kNone) {
return internal::TPMType::kVirtual;
}
return internal::TPMType::kNone;
}
void ReportUmaLatency(TPMOperation operation,
internal::TPMSupport algo,
base::TimeDelta latency,
KeyType type = KeyType::kHardwareKey) {
std::string histogram_name =
"Crypto.TPMDuration." + GetHistogramPrefixForKeyType(type) +
OperationToString(operation) + GetHistogramSuffixForAlgo(algo);
base::UmaHistogramMediumTimes(histogram_name, latency);
}
void ReportUmaOperationSuccess(TPMOperation operation,
internal::TPMSupport algo,
bool status,
KeyType type = KeyType::kHardwareKey) {
std::string histogram_name =
"Crypto.TPMOperation." + GetHistogramPrefixForKeyType(type) +
OperationToString(operation) + GetHistogramSuffixForAlgo(algo);
base::UmaHistogramBoolean(histogram_name, status);
}
void ReportUmaTpmOperation(TPMOperation operation,
internal::TPMSupport algo,
base::TimeDelta latency,
bool status,
KeyType type = KeyType::kHardwareKey) {
ReportUmaOperationSuccess(operation, algo, status, type);
if (status && operation != TPMOperation::kMessageVerify) {
// Only report latency for successful operations
// No latency reported for verification that is done outside of TPM
ReportUmaLatency(operation, algo, latency, type);
}
}
internal::TPMSupport MeasureVirtualTpmOperations() {
internal::TPMSupport supported_virtual_algo = internal::TPMSupport::kNone;
std::unique_ptr<VirtualUnexportableKeyProvider> virtual_provider =
GetVirtualUnexportableKeyProvider_DO_NOT_USE_METRICS_ONLY();
if (!virtual_provider) {
return supported_virtual_algo;
}
auto algo = virtual_provider->SelectAlgorithm(kAllAlgorithms);
if (algo) {
switch (*algo) {
case SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256:
supported_virtual_algo = internal::TPMSupport::kECDSA;
break;
case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256:
supported_virtual_algo = internal::TPMSupport::kRSA;
break;
case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA1:
case SignatureVerifier::SignatureAlgorithm::RSA_PSS_SHA256:
// Not supported for this metric.
break;
}
}
// Report if virtual TPM is supported and best algo
base::UmaHistogramEnumeration("Crypto.VirtualKeySupport",
supported_virtual_algo);
base::ElapsedTimer key_creation_timer;
std::unique_ptr<VirtualUnexportableSigningKey> current_key =
virtual_provider->GenerateSigningKey(kAllAlgorithms, kTestKeyName);
ReportUmaTpmOperation(TPMOperation::kNewKeyCreation, supported_virtual_algo,
key_creation_timer.Elapsed(), current_key != nullptr,
KeyType::kVirtualizedKey);
if (!current_key) {
// Report no support if keys cannot be created, Windows appears to always
// mark the keys as available in SelectAlgorithm.
return internal::TPMSupport::kNone;
}
base::ElapsedTimer open_key_timer;
std::string key_name = current_key->GetKeyName();
std::unique_ptr<VirtualUnexportableSigningKey> opened_key =
virtual_provider->FromKeyName(key_name);
// Re-using TPMOperation::kWrappedKeyCreation for restoring keys even though
// there are no wrapped keys involved.
ReportUmaTpmOperation(TPMOperation::kWrappedKeyCreation,
supported_virtual_algo, open_key_timer.Elapsed(),
opened_key != nullptr, KeyType::kVirtualizedKey);
const uint8_t msg[] = {1, 2, 3, 4};
base::ElapsedTimer message_signing_timer;
std::optional<std::vector<uint8_t>> signed_bytes = current_key->Sign(msg);
ReportUmaTpmOperation(TPMOperation::kMessageSigning, supported_virtual_algo,
message_signing_timer.Elapsed(),
signed_bytes.has_value(), KeyType::kVirtualizedKey);
if (signed_bytes.has_value()) {
crypto::SignatureVerifier verifier;
bool verify_init =
verifier.VerifyInit(current_key->Algorithm(), signed_bytes.value(),
current_key->GetSubjectPublicKeyInfo());
if (verify_init) {
verifier.VerifyUpdate(msg);
bool verify_final = verifier.VerifyFinal();
ReportUmaOperationSuccess(TPMOperation::kMessageVerify,
supported_virtual_algo, verify_final,
KeyType::kVirtualizedKey);
} else {
ReportUmaOperationSuccess(TPMOperation::kMessageVerify,
supported_virtual_algo, verify_init,
KeyType::kVirtualizedKey);
}
}
current_key.get()->DeleteKey();
return supported_virtual_algo;
}
void MeasureTpmOperationsInternal(UnexportableKeyProvider::Config config) {
internal::TPMSupport supported_algo = internal::TPMSupport::kNone;
std::unique_ptr<UnexportableKeyProvider> provider =
GetUnexportableKeyProvider(std::move(config));
if (!provider) {
base::UmaHistogramEnumeration("Crypto.TPMSupportType", supported_algo);
return;
}
auto algo = provider->SelectAlgorithm(kAllAlgorithms);
if (algo) {
switch (*algo) {
case SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256:
supported_algo = internal::TPMSupport::kECDSA;
break;
case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256:
supported_algo = internal::TPMSupport::kRSA;
break;
case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA1:
case SignatureVerifier::SignatureAlgorithm::RSA_PSS_SHA256:
// Not supported for this metric.
break;
}
}
internal::TPMSupport supported_virtual_algo = MeasureVirtualTpmOperations();
base::UmaHistogramEnumeration(
"Crypto.TPMSupportType",
GetSupportedTpm(supported_algo, supported_virtual_algo));
// Report if TPM is supported and best algo
base::UmaHistogramEnumeration("Crypto.TPMSupport2", supported_algo);
if (supported_algo == internal::TPMSupport::kNone) {
return;
}
auto delete_key = [&provider](UnexportableSigningKey* key) {
provider->DeleteSigningKeySlowly(key->GetWrappedKey());
delete key;
};
base::ElapsedTimer key_creation_timer;
std::unique_ptr<UnexportableSigningKey, decltype(delete_key)> current_key(
provider->GenerateSigningKeySlowly(kAllAlgorithms).release(), delete_key);
ReportUmaTpmOperation(TPMOperation::kNewKeyCreation, supported_algo,
key_creation_timer.Elapsed(), current_key != nullptr);
if (!current_key) {
return;
}
base::ElapsedTimer wrapped_key_creation_timer;
std::unique_ptr<UnexportableSigningKey, decltype(delete_key)> wrapped_key(
provider->FromWrappedSigningKeySlowly(current_key->GetWrappedKey())
.release(),
delete_key);
ReportUmaTpmOperation(TPMOperation::kWrappedKeyCreation, supported_algo,
wrapped_key_creation_timer.Elapsed(),
wrapped_key != nullptr);
const uint8_t msg[] = {1, 2, 3, 4};
base::ElapsedTimer message_signing_timer;
std::optional<std::vector<uint8_t>> signed_bytes =
current_key->SignSlowly(msg);
ReportUmaTpmOperation(TPMOperation::kMessageSigning, supported_algo,
message_signing_timer.Elapsed(),
signed_bytes.has_value());
if (!signed_bytes.has_value()) {
return;
}
crypto::SignatureVerifier verifier;
bool verify_init =
verifier.VerifyInit(current_key->Algorithm(), signed_bytes.value(),
current_key->GetSubjectPublicKeyInfo());
if (verify_init) {
verifier.VerifyUpdate(msg);
bool verify_final = verifier.VerifyFinal();
ReportUmaOperationSuccess(TPMOperation::kMessageVerify, supported_algo,
verify_final);
} else {
ReportUmaOperationSuccess(TPMOperation::kMessageVerify, supported_algo,
verify_init);
}
}
} // namespace
namespace internal {
void MeasureTpmOperationsInternalForTesting() {
MeasureTpmOperationsInternal(/*config=*/{});
}
} // namespace internal
std::string OperationToString(TPMOperation operation) {
switch (operation) {
case TPMOperation::kMessageSigning:
return "MessageSigning";
case TPMOperation::kMessageVerify:
return "MessageVerify";
case TPMOperation::kNewKeyCreation:
return "NewKeyCreation";
case TPMOperation::kWrappedKeyCreation:
return "WrappedKeyCreation";
case TPMOperation::kWrappedKeyExport:
return "WrappedKeyExport";
}
}
std::string AlgorithmToString(SignatureVerifier::SignatureAlgorithm algorithm) {
switch (algorithm) {
case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA1:
case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256:
case SignatureVerifier::SignatureAlgorithm::RSA_PSS_SHA256:
return "RSA";
case SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256:
return "ECDSA";
}
}
void MaybeMeasureTpmOperations(UnexportableKeyProvider::Config config) {
base::ThreadPool::PostTask(
FROM_HERE,
{base::MayBlock(), base::TaskPriority::BEST_EFFORT,
base::TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN},
base::BindOnce(&MeasureTpmOperationsInternal, std::move(config)));
}
} // namespace crypto
|