1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "gpu/command_buffer/client/gl_helper_scaling.h"
#include <stddef.h>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>
#include "base/containers/circular_deque.h"
#include "base/containers/heap_array.h"
#include "base/functional/bind.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/ref_counted.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "gpu/GLES2/gl2extchromium.h"
#include "gpu/command_buffer/client/gles2_interface.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/vector2d_f.h"
namespace gpu {
using gles2::GLES2Interface;
namespace {
// Linear translation from RGB to grayscale.
const GLfloat kRGBtoGrayscaleColorWeights[4] = {0.213f, 0.715f, 0.072f, 0.0f};
// Linear translation from RGB to YUV color space.
const GLfloat kRGBtoYColorWeights[4] = {0.257f, 0.504f, 0.098f, 0.0625f};
const GLfloat kRGBtoUColorWeights[4] = {-0.148f, -0.291f, 0.439f, 0.5f};
const GLfloat kRGBtoVColorWeights[4] = {0.439f, -0.368f, -0.071f, 0.5f};
// Returns true iff a_num/a_denom == b_num/b_denom.
bool AreRatiosEqual(int32_t a_num,
int32_t a_denom,
int32_t b_num,
int32_t b_denom) {
// The math (for each dimension):
// If: a_num/a_denom == b_num/b_denom
// Then: a_num*b_denom == b_num*a_denom
//
// ...and cast to int64_t to guarantee no overflow from the multiplications.
return (static_cast<int64_t>(a_num) * b_denom) ==
(static_cast<int64_t>(b_num) * a_denom);
}
} // namespace
GLHelperScaling::GLHelperScaling(GLES2Interface* gl, GLHelper* helper)
: gl_(gl), helper_(helper), vertex_attributes_buffer_(gl_) {
InitBuffer();
}
GLHelperScaling::~GLHelperScaling() {}
// Used to keep track of a generated shader program. The program
// is passed in as text through Setup and is used by calling
// UseProgram() with the right parameters. Note that |gl_|
// and |helper_| are assumed to live longer than this program.
class ShaderProgram : public base::RefCounted<ShaderProgram> {
public:
ShaderProgram(GLES2Interface* gl,
GLHelper* helper,
GLHelperScaling::ShaderType shader)
: gl_(gl),
helper_(helper),
shader_(shader),
program_(gl_->CreateProgram()),
position_location_(-1),
texcoord_location_(-1),
src_rect_location_(-1),
src_pixelsize_location_(-1),
scaling_vector_location_(-1),
rgb_to_plane0_location_(-1),
rgb_to_plane1_location_(-1),
rgb_to_plane2_location_(-1) {}
ShaderProgram(const ShaderProgram&) = delete;
ShaderProgram& operator=(const ShaderProgram&) = delete;
// Compile shader program.
void Setup(const GLchar* vertex_shader_text,
const GLchar* fragment_shader_text);
// UseProgram must be called with GL_ARRAY_BUFFER bound to a vertex attribute
// buffer. |src_texture_size| is the size of the entire source texture,
// regardless of which region is to be sampled. |src_rect| is the source
// region not including overscan pixels past the edges. The program produces a
// scaled image placed at Rect(0, 0, dst_size.width(), dst_size.height()) in
// the destination texture(s).
void UseProgram(const gfx::Size& src_texture_size,
const gfx::RectF& src_rect,
const gfx::Size& dst_size,
bool scale_x,
bool flip_y,
const GLfloat color_weights[3][4]);
bool Initialized() const { return position_location_ != -1; }
private:
friend class base::RefCounted<ShaderProgram>;
~ShaderProgram() { gl_->DeleteProgram(program_); }
raw_ptr<GLES2Interface> gl_;
raw_ptr<GLHelper> helper_;
const GLHelperScaling::ShaderType shader_;
// A program for copying a source texture into a destination texture.
GLuint program_;
// The location of the position in the program.
GLint position_location_;
// The location of the texture coordinate in the program.
GLint texcoord_location_;
// The location of the source texture in the program.
GLint texture_location_;
// The location of the texture coordinate of the source rectangle in the
// program.
GLint src_rect_location_;
// Location of size of source image in pixels.
GLint src_pixelsize_location_;
// Location of vector for scaling ratio between source and dest textures.
GLint scaling_vector_location_;
// Location of color weights, for programs that convert from interleaved to
// planar pixel orderings/formats.
GLint rgb_to_plane0_location_;
GLint rgb_to_plane1_location_;
GLint rgb_to_plane2_location_;
};
// Implementation of a single stage in a scaler pipeline. If the pipeline has
// multiple stages, it calls Scale() on the subscaler, then further scales the
// output. Caches textures and framebuffers to avoid allocating/deleting
// them once per frame, which can be expensive on some drivers.
class ScalerImpl : public GLHelper::ScalerInterface {
public:
// |gl| and |scaler_helper| are expected to live longer than this object.
ScalerImpl(GLES2Interface* gl,
GLHelperScaling* scaler_helper,
const GLHelperScaling::ScalerStage& scaler_stage,
std::unique_ptr<ScalerImpl> subscaler)
: gl_(gl),
scaler_helper_(scaler_helper),
spec_(scaler_stage),
intermediate_texture_(0),
dst_framebuffer_(gl),
subscaler_(std::move(subscaler)) {
shader_program_ =
scaler_helper_->GetShaderProgram(spec_.shader, spec_.swizzle);
}
~ScalerImpl() override {
if (intermediate_texture_) {
gl_->DeleteTextures(1, &intermediate_texture_);
}
}
void SetColorWeights(int plane, const GLfloat color_weights[4]) {
DCHECK(plane >= 0 && plane < 3);
color_weights_[plane][0] = color_weights[0];
color_weights_[plane][1] = color_weights[1];
color_weights_[plane][2] = color_weights[2];
color_weights_[plane][3] = color_weights[3];
}
void ScaleToMultipleOutputs(GLuint src_texture,
const gfx::Size& src_texture_size,
const gfx::Vector2dF& src_offset,
GLuint dest_texture_0,
GLuint dest_texture_1,
const gfx::Rect& output_rect) override {
// TODO(crbug.com/41350322): Do not accept non-whole-numbered offsets
// until the shader programs produce the correct output for them.
DCHECK_EQ(src_offset.x(), std::floor(src_offset.x()));
DCHECK_EQ(src_offset.y(), std::floor(src_offset.y()));
if (output_rect.IsEmpty())
return; // No work to do.
gfx::RectF src_rect = ToSourceRect(output_rect);
// Ensure conflicting GL capabilities are disabled. The following explicity
// disables those known to possibly be enabled in GL compositing code, while
// the helper method call will DCHECK a wider set.
gl_->Disable(GL_SCISSOR_TEST);
gl_->Disable(GL_STENCIL_TEST);
gl_->Disable(GL_BLEND);
DCheckNoConflictingCapabilitiesAreEnabled();
if (subscaler_) {
gfx::RectF overscan_rect = src_rect;
PadForOverscan(&overscan_rect);
const auto intermediate = subscaler_->GenerateIntermediateTexture(
src_texture, src_texture_size, src_offset,
gfx::ToEnclosingRect(overscan_rect));
src_rect -= intermediate.second.OffsetFromOrigin();
Execute(intermediate.first, intermediate.second.size(), src_rect,
dest_texture_0, dest_texture_1, output_rect.size());
} else {
if (spec_.flipped_source) {
src_rect.set_x(src_rect.x() + src_offset.x());
src_rect.set_y(src_texture_size.height() - src_rect.bottom() -
src_offset.y());
} else {
src_rect += src_offset;
}
Execute(src_texture, src_texture_size, src_rect, dest_texture_0,
dest_texture_1, output_rect.size());
}
}
void ComputeRegionOfInfluence(const gfx::Size& src_texture_size,
const gfx::Vector2dF& src_offset,
const gfx::Rect& output_rect,
gfx::Rect* sampling_rect,
gfx::Vector2dF* offset) const override {
// This mimics the recursive behavior of GenerateIntermediateTexture(),
// computing the size of the intermediate texture required by each scaler
// in the chain.
gfx::Rect intermediate_rect = output_rect;
const ScalerImpl* scaler = this;
while (scaler->subscaler_) {
gfx::RectF overscan_rect = scaler->ToSourceRect(intermediate_rect);
scaler->PadForOverscan(&overscan_rect);
intermediate_rect = gfx::ToEnclosingRect(overscan_rect);
scaler = scaler->subscaler_.get();
}
// At this point, |scaler| points to the first scaler in the chain. Compute
// the source rect that would have been used with the shader program, and
// then pad that to account for the shader program's overscan pixels.
const auto rects = scaler->ComputeBaseCaseRects(
src_texture_size, src_offset, intermediate_rect);
gfx::RectF src_overscan_rect = rects.first;
scaler->PadForOverscan(&src_overscan_rect);
// Provide a whole-numbered Rect result along with the offset to the origin
// point.
*sampling_rect = gfx::ToEnclosingRect(src_overscan_rect);
sampling_rect->Intersect(gfx::Rect(src_texture_size));
*offset = gfx::ScaleVector2d(
output_rect.OffsetFromOrigin(),
static_cast<float>(chain_properties_->scale_from.x()) /
chain_properties_->scale_to.x(),
static_cast<float>(chain_properties_->scale_from.y()) /
chain_properties_->scale_to.y());
if (scaler->spec_.flipped_source) {
offset->set_x(offset->x() - sampling_rect->x());
offset->set_y(offset->y() -
(src_texture_size.height() - sampling_rect->bottom()));
} else {
*offset -= sampling_rect->OffsetFromOrigin();
}
}
// Sets the overall scale ratio and swizzle for the entire chain of Scalers.
void SetChainProperties(const gfx::Vector2d& from,
const gfx::Vector2d& to,
bool swizzle) {
chain_properties_.emplace(ChainProperties{
from, to, static_cast<GLenum>(swizzle ? GL_BGRA_EXT : GL_RGBA)});
}
// WARNING: This method should only be called by external clients, since they
// are using it compare against the overall scale ratio (of the entire chain
// of Scalers).
bool IsSameScaleRatio(const gfx::Vector2d& from,
const gfx::Vector2d& to) const override {
const gfx::Vector2d& overall_from = chain_properties_->scale_from;
const gfx::Vector2d& overall_to = chain_properties_->scale_to;
return AreRatiosEqual(overall_from.x(), overall_to.x(), from.x(), to.x()) &&
AreRatiosEqual(overall_from.y(), overall_to.y(), from.y(), to.y());
}
bool IsSamplingFlippedSource() const override {
const ScalerImpl* scaler = this;
while (scaler->subscaler_) {
DCHECK(!scaler->spec_.flipped_source);
scaler = scaler->subscaler_.get();
}
return scaler->spec_.flipped_source;
}
bool IsFlippingOutput() const override {
bool flipped_overall = false;
const ScalerImpl* scaler = this;
while (scaler) {
flipped_overall = (flipped_overall != scaler->spec_.flip_output);
scaler = scaler->subscaler_.get();
}
return flipped_overall;
}
GLenum GetReadbackFormat() const override {
return chain_properties_->readback_format;
}
private:
// In DCHECK-enabled builds, this checks that no conflicting GL capability is
// currently enabled in the GL context. Any of these might cause problems when
// the shader draw operations are executed.
void DCheckNoConflictingCapabilitiesAreEnabled() const {
DCHECK_NE(gl_->IsEnabled(GL_BLEND), GL_TRUE);
DCHECK_NE(gl_->IsEnabled(GL_CULL_FACE), GL_TRUE);
DCHECK_NE(gl_->IsEnabled(GL_DEPTH_TEST), GL_TRUE);
DCHECK_NE(gl_->IsEnabled(GL_POLYGON_OFFSET_FILL), GL_TRUE);
DCHECK_NE(gl_->IsEnabled(GL_SAMPLE_ALPHA_TO_COVERAGE), GL_TRUE);
DCHECK_NE(gl_->IsEnabled(GL_SAMPLE_COVERAGE), GL_TRUE);
DCHECK_NE(gl_->IsEnabled(GL_SCISSOR_TEST), GL_TRUE);
DCHECK_NE(gl_->IsEnabled(GL_STENCIL_TEST), GL_TRUE);
}
// Expands the given |sampling_rect| to account for the extra pixels bordering
// it that will be sampled by the shaders.
void PadForOverscan(gfx::RectF* sampling_rect) const {
// Room for optimization: These are conservative calculations. Some of the
// shaders actually require fewer overscan pixels.
float overscan_x = 0;
float overscan_y = 0;
switch (spec_.shader) {
case GLHelperScaling::SHADER_BILINEAR:
case GLHelperScaling::SHADER_BILINEAR2:
case GLHelperScaling::SHADER_BILINEAR3:
case GLHelperScaling::SHADER_BILINEAR4:
case GLHelperScaling::SHADER_BILINEAR2X2:
case GLHelperScaling::SHADER_PLANAR:
case GLHelperScaling::SHADER_YUV_MRT_PASS1:
case GLHelperScaling::SHADER_YUV_MRT_PASS2:
overscan_x =
static_cast<float>(spec_.scale_from.x()) / spec_.scale_to.x();
overscan_y =
static_cast<float>(spec_.scale_from.y()) / spec_.scale_to.y();
break;
case GLHelperScaling::SHADER_BICUBIC_UPSCALE:
DCHECK_LE(spec_.scale_from.x(), spec_.scale_to.x());
DCHECK_LE(spec_.scale_from.y(), spec_.scale_to.y());
// This shader always reads a radius of 2 pixels about the sampling
// point.
overscan_x = 2.0f;
overscan_y = 2.0f;
break;
case GLHelperScaling::SHADER_BICUBIC_HALF_1D: {
DCHECK_GE(spec_.scale_from.x(), spec_.scale_to.x());
DCHECK_GE(spec_.scale_from.y(), spec_.scale_to.y());
// kLobeDist is the largest pixel read offset in the shader program.
constexpr float kLobeDist = 11.0f / 4.0f;
overscan_x = kLobeDist * spec_.scale_from.x() / spec_.scale_to.x();
overscan_y = kLobeDist * spec_.scale_from.y() / spec_.scale_to.y();
break;
}
}
// Because the texture sampler sometimes reads between pixels, an extra one
// must be accounted for.
sampling_rect->Inset(
-gfx::InsetsF::VH(overscan_y + 1.0f, overscan_x + 1.0f));
}
// Returns the given |rect| in source coordinates.
gfx::RectF ToSourceRect(const gfx::Rect& rect) const {
return gfx::ScaleRect(
gfx::RectF(rect),
static_cast<float>(spec_.scale_from.x()) / spec_.scale_to.x(),
static_cast<float>(spec_.scale_from.y()) / spec_.scale_to.y());
}
// Returns the given |rect| in output coordinates, enlarged to whole-number
// coordinates.
gfx::Rect ToOutputRect(const gfx::RectF& rect) const {
return gfx::ToEnclosingRect(gfx::ScaleRect(
rect, static_cast<float>(spec_.scale_to.x()) / spec_.scale_from.x(),
static_cast<float>(spec_.scale_to.y()) / spec_.scale_from.y()));
}
// Returns the source and output rects to use with the shader program,
// assuming this scaler is the "base case" (i.e., it has no subscaler). The
// returned output rect is clamped according to what the source texture can
// provide.
std::pair<gfx::RectF, gfx::Rect> ComputeBaseCaseRects(
const gfx::Size& src_texture_size,
const gfx::Vector2dF& src_offset,
const gfx::Rect& requested_output_rect) const {
DCHECK(!subscaler_);
// Determine what the requested source rect is, and clamp to the texture's
// bounds.
gfx::RectF src_rect = ToSourceRect(requested_output_rect);
src_rect += src_offset;
if (spec_.flipped_source)
src_rect.set_y(src_texture_size.height() - src_rect.bottom());
src_rect.Intersect(gfx::RectF(gfx::SizeF(src_texture_size)));
// From the clamped source rect, re-compute the output rect that will be
// provided to the next scaler stage. This will either be all of what was
// requested or a smaller rect. See comments in
// GenerateIntermediateTexture().
if (spec_.flipped_source)
src_rect.set_y(src_texture_size.height() - src_rect.bottom());
src_rect -= src_offset;
const gfx::Rect output_rect = ToOutputRect(src_rect);
// Once again, compute the source rect from the output rect, which might
// spill-over the texture's bounds slightly (but only by the minimal amount
// necessary). Apply the |src_offset| and vertically-flip this source rect,
// if necessary, as this is what will be provided directly to the shader
// program.
src_rect = ToSourceRect(output_rect);
src_rect += src_offset;
if (spec_.flipped_source)
src_rect.set_y(src_texture_size.height() - src_rect.bottom());
return std::make_pair(src_rect, output_rect);
}
// Generates the intermediate texture and/or re-defines it if its size has
// changed.
void EnsureIntermediateTextureDefined(const gfx::Size& size) {
// Reallocate a new texture, if needed.
if (!intermediate_texture_)
gl_->GenTextures(1, &intermediate_texture_);
if (intermediate_texture_size_ != size) {
gl_->BindTexture(GL_TEXTURE_2D, intermediate_texture_);
gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size.width(), size.height(), 0,
GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
intermediate_texture_size_ = size;
}
}
// Returns a texture of this intermediate scaling step. The caller does NOT
// own the returned texture. The texture may be smaller than the
// |requested_output_rect.size()|, if that eliminates data redundancy that
// GL_CLAMP_TO_EDGE will correct for.
std::pair<GLuint, gfx::Rect> GenerateIntermediateTexture(
GLuint src_texture,
const gfx::Size& src_texture_size,
const gfx::Vector2dF& src_offset,
const gfx::Rect& requested_output_rect) {
// Base case: If there is no subscaler, render the intermediate texture from
// the |src_texture| and return it.
if (!subscaler_) {
const auto rects = ComputeBaseCaseRects(src_texture_size, src_offset,
requested_output_rect);
EnsureIntermediateTextureDefined(rects.second.size());
Execute(src_texture, src_texture_size, rects.first, intermediate_texture_,
0, rects.second.size());
return std::make_pair(intermediate_texture_, rects.second);
}
// Recursive case: Output from the subscaler is needed to generate this
// scaler's intermediate texture. Compute the region of pixels that will be
// sampled, and request those pixels from the subscaler.
gfx::RectF sampling_rect = ToSourceRect(requested_output_rect);
PadForOverscan(&sampling_rect);
const auto intermediate = subscaler_->GenerateIntermediateTexture(
src_texture, src_texture_size, src_offset,
gfx::ToEnclosingRect(sampling_rect));
const GLuint& sampling_texture = intermediate.first;
const gfx::Rect& sampling_bounds = intermediate.second;
// The subscaler might not have provided pixels for the entire requested
// |sampling_rect| because they would be redundant (i.e., GL_CLAMP_TO_EDGE
// behavior will generate the redundant pixel values in the rendering step,
// below). Thus, re-compute |requested_output_rect| and |sampling_rect| when
// this has occurred.
gfx::Rect output_rect;
if (sampling_bounds.Contains(gfx::ToEnclosingRect(sampling_rect))) {
output_rect = requested_output_rect;
} else {
sampling_rect.Intersect(gfx::RectF(sampling_bounds));
output_rect = ToOutputRect(sampling_rect);
// The new sampling rect might exceed the bounds slightly, but only by the
// minimal amount necessary to populate the entire output.
sampling_rect = ToSourceRect(output_rect);
}
// Render the output, but do not account for |src_offset| nor vertical
// flipping because that should have been handled in the base case.
EnsureIntermediateTextureDefined(output_rect.size());
DCHECK(!spec_.flipped_source);
Execute(sampling_texture, sampling_bounds.size(),
sampling_rect - sampling_bounds.OffsetFromOrigin(),
intermediate_texture_, 0, output_rect.size());
return std::make_pair(intermediate_texture_, output_rect);
}
// Executes the scale, mapping pixels from |src_texture| to one or two
// outputs, transforming the source pixels in |src_rect| to produce a
// result of the given size. |src_texture_size| is the size of the entire
// |src_texture|, regardless of the sampled region.
void Execute(GLuint src_texture,
const gfx::Size& src_texture_size,
const gfx::RectF& src_rect,
GLuint dest_texture_0,
GLuint dest_texture_1,
const gfx::Size& result_size) {
// Attach output texture(s) to the framebuffer.
ScopedFramebufferBinder<GL_FRAMEBUFFER> framebuffer_binder(
gl_, dst_framebuffer_);
gl_->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, dest_texture_0, 0);
if (dest_texture_1 > 0) {
gl_->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + 1,
GL_TEXTURE_2D, dest_texture_1, 0);
}
// Use GL_NEAREST for copies between exactly same size of rectangles to
// reduce errors on low-precision GPUs. Use bilinear filtering otherwise.
//
// This is a workaround for Mali-G72 GPU (b/141898654) that uses lower
// precision than expected for interpolation.
GLint filter = (src_rect.IsExpressibleAsRect() &&
src_rect.size() == gfx::SizeF(result_size))
? GL_NEAREST
: GL_LINEAR;
// Set the active texture unit to 0 for the ScopedTextureBinder below, then
// restore the original value when done. (crbug.com/1103385)
GLint oldActiveTexture = 0;
gl_->GetIntegerv(GL_ACTIVE_TEXTURE, &oldActiveTexture);
gl_->ActiveTexture(GL_TEXTURE0);
{
// Bind to the source texture and set the filitering and clamp to the
// edge, as required by all shader programs.
ScopedTextureBinder<GL_TEXTURE_2D> texture_binder(gl_, src_texture);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Prepare the shader program for drawing.
ScopedBufferBinder<GL_ARRAY_BUFFER> buffer_binder(
gl_, scaler_helper_->vertex_attributes_buffer_);
shader_program_->UseProgram(src_texture_size, src_rect, result_size,
spec_.scale_x, spec_.flip_output,
color_weights_);
// Execute the draw.
gl_->Viewport(0, 0, result_size.width(), result_size.height());
const GLenum buffers[] = {GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT0 + 1};
if (dest_texture_1 > 0) {
DCHECK_LE(2, scaler_helper_->helper_->MaxDrawBuffers());
gl_->DrawBuffersEXT(2, buffers);
}
gl_->DrawArrays(GL_TRIANGLE_STRIP, 0, 4);
if (dest_texture_1 > 0) {
// Set the draw buffers back to not disrupt external operations.
gl_->DrawBuffersEXT(1, buffers);
}
// ScopedTextureBinder ends here, before restoring ActiveTexture state.
}
gl_->ActiveTexture(oldActiveTexture);
}
raw_ptr<GLES2Interface> gl_;
raw_ptr<GLHelperScaling> scaler_helper_;
GLHelperScaling::ScalerStage spec_;
GLfloat color_weights_[3][4]; // A vec4 for each plane.
GLuint intermediate_texture_;
gfx::Size intermediate_texture_size_;
scoped_refptr<ShaderProgram> shader_program_;
ScopedFramebuffer dst_framebuffer_;
std::unique_ptr<ScalerImpl> subscaler_;
// This last member is only set on ScalerImpls that are exposed to external
// modules. This is so the client can query the overall scale ratio and
// swizzle provided by a chain of ScalerImpls.
struct ChainProperties {
gfx::Vector2d scale_from;
gfx::Vector2d scale_to;
GLenum readback_format;
};
std::optional<ChainProperties> chain_properties_;
};
// The important inputs for this function is |x_ops| and |y_ops|. They represent
// scaling operations to be done on a source image of relative size
// |scale_from|. If |quality| is SCALER_QUALITY_BEST, then interpret these scale
// operations literally and create one scaler stage for each ScaleOp. However,
// if |quality| is SCALER_QUALITY_GOOD, then enable some optimizations that
// combine two or more ScaleOps in to a single scaler stage. Normally first
// ScaleOps from |y_ops| are processed first and |x_ops| after all the |y_ops|,
// but sometimes it's possible to combine one or more operation from both
// queues essentially for free. This is the reason why |x_ops| and |y_ops|
// aren't just one single queue.
// static
void GLHelperScaling::ConvertScalerOpsToScalerStages(
GLHelper::ScalerQuality quality,
gfx::Vector2d scale_from,
base::circular_deque<GLHelperScaling::ScaleOp>* x_ops,
base::circular_deque<GLHelperScaling::ScaleOp>* y_ops,
std::vector<ScalerStage>* scaler_stages) {
while (!x_ops->empty() || !y_ops->empty()) {
gfx::Vector2d intermediate_scale = scale_from;
base::circular_deque<ScaleOp>* current_queue = nullptr;
if (!y_ops->empty()) {
current_queue = y_ops;
} else {
current_queue = x_ops;
}
ShaderType current_shader = SHADER_BILINEAR;
switch (current_queue->front().scale_factor) {
case 0:
if (quality == GLHelper::SCALER_QUALITY_BEST) {
current_shader = SHADER_BICUBIC_UPSCALE;
}
break;
case 2:
if (quality == GLHelper::SCALER_QUALITY_BEST) {
current_shader = SHADER_BICUBIC_HALF_1D;
}
break;
case 3:
DCHECK(quality != GLHelper::SCALER_QUALITY_BEST);
current_shader = SHADER_BILINEAR3;
break;
default:
NOTREACHED();
}
bool scale_x = current_queue->front().scale_x;
current_queue->front().UpdateScale(&intermediate_scale);
current_queue->pop_front();
// Optimization: Sometimes we can combine 2-4 scaling operations into
// one operation.
if (quality == GLHelper::SCALER_QUALITY_GOOD) {
if (!current_queue->empty() && current_shader == SHADER_BILINEAR) {
// Combine two steps in the same dimension.
current_queue->front().UpdateScale(&intermediate_scale);
current_queue->pop_front();
current_shader = SHADER_BILINEAR2;
if (!current_queue->empty()) {
// Combine three steps in the same dimension.
current_queue->front().UpdateScale(&intermediate_scale);
current_queue->pop_front();
current_shader = SHADER_BILINEAR4;
}
}
// Check if we can combine some steps in the other dimension as well.
// Since all shaders currently use GL_LINEAR, we can easily scale up
// or scale down by exactly 2x at the same time as we do another
// operation. Currently, the following mergers are supported:
// * 1 bilinear Y-pass with 1 bilinear X-pass (up or down)
// * 2 bilinear Y-passes with 2 bilinear X-passes
// * 1 bilinear Y-pass with N bilinear X-pass
// * N bilinear Y-passes with 1 bilinear X-pass (down only)
// Measurements indicate that generalizing this for 3x3 and 4x4
// makes it slower on some platforms, such as the Pixel.
if (!scale_x && x_ops->size() > 0 && x_ops->front().scale_factor <= 2) {
int x_passes = 0;
if (current_shader == SHADER_BILINEAR2 && x_ops->size() >= 2) {
// 2y + 2x passes
x_passes = 2;
current_shader = SHADER_BILINEAR2X2;
} else if (current_shader == SHADER_BILINEAR) {
// 1y + Nx passes
scale_x = true;
switch (x_ops->size()) {
case 0:
NOTREACHED();
case 1:
if (x_ops->front().scale_factor == 3) {
current_shader = SHADER_BILINEAR3;
}
x_passes = 1;
break;
case 2:
x_passes = 2;
current_shader = SHADER_BILINEAR2;
break;
default:
x_passes = 3;
current_shader = SHADER_BILINEAR4;
break;
}
} else if (x_ops->front().scale_factor == 2) {
// Ny + 1x-downscale
x_passes = 1;
}
for (int i = 0; i < x_passes; i++) {
x_ops->front().UpdateScale(&intermediate_scale);
x_ops->pop_front();
}
}
}
scaler_stages->emplace_back(ScalerStage{current_shader, scale_from,
intermediate_scale, scale_x, false,
false, false});
scale_from = intermediate_scale;
}
}
// static
void GLHelperScaling::ComputeScalerStages(
GLHelper::ScalerQuality quality,
const gfx::Vector2d& scale_from,
const gfx::Vector2d& scale_to,
bool flipped_source,
bool flip_output,
bool swizzle,
std::vector<ScalerStage>* scaler_stages) {
if (quality == GLHelper::SCALER_QUALITY_FAST || scale_from == scale_to) {
scaler_stages->emplace_back(ScalerStage{SHADER_BILINEAR, scale_from,
scale_to, false, flipped_source,
flip_output, swizzle});
return;
}
base::circular_deque<GLHelperScaling::ScaleOp> x_ops, y_ops;
GLHelperScaling::ScaleOp::AddOps(scale_from.x(), scale_to.x(), true,
quality == GLHelper::SCALER_QUALITY_GOOD,
&x_ops);
GLHelperScaling::ScaleOp::AddOps(scale_from.y(), scale_to.y(), false,
quality == GLHelper::SCALER_QUALITY_GOOD,
&y_ops);
DCHECK_GT(x_ops.size() + y_ops.size(), 0u);
ConvertScalerOpsToScalerStages(quality, scale_from, &x_ops, &y_ops,
scaler_stages);
DCHECK_EQ(x_ops.size() + y_ops.size(), 0u);
DCHECK(!scaler_stages->empty());
// If the source content is flipped, the first scaler stage will perform math
// to account for this. It also will flip the content during scaling so that
// all following stages may assume the content is not flipped. Then, the final
// stage must ensure the final output is correctly flipped-back (or not) based
// on what the first stage did PLUS what is being requested by the client
// code.
if (flipped_source) {
scaler_stages->front().flipped_source = true;
scaler_stages->front().flip_output = true;
}
if (flipped_source != flip_output) {
scaler_stages->back().flip_output = !scaler_stages->back().flip_output;
}
scaler_stages->back().swizzle = swizzle;
}
std::unique_ptr<GLHelper::ScalerInterface> GLHelperScaling::CreateScaler(
GLHelper::ScalerQuality quality,
const gfx::Vector2d& scale_from,
const gfx::Vector2d& scale_to,
bool flipped_source,
bool flip_output,
bool swizzle) {
if (scale_from.x() == 0 || scale_from.y() == 0 || scale_to.x() == 0 ||
scale_to.y() == 0) {
// Invalid arguments: Cannot scale from or to a relative size of 0.
return nullptr;
}
std::vector<ScalerStage> scaler_stages;
ComputeScalerStages(quality, scale_from, scale_to, flipped_source,
flip_output, swizzle, &scaler_stages);
std::unique_ptr<ScalerImpl> ret;
for (unsigned int i = 0; i < scaler_stages.size(); i++) {
ret = std::make_unique<ScalerImpl>(gl_, this, scaler_stages[i],
std::move(ret));
}
ret->SetChainProperties(scale_from, scale_to, swizzle);
return std::move(ret);
}
std::unique_ptr<GLHelper::ScalerInterface>
GLHelperScaling::CreateGrayscalePlanerizer(bool flipped_source,
bool flip_output,
bool swizzle) {
const ScalerStage stage = {
SHADER_PLANAR, gfx::Vector2d(4, 1), gfx::Vector2d(1, 1),
true, flipped_source, flip_output,
swizzle};
auto result = std::make_unique<ScalerImpl>(gl_, this, stage, nullptr);
result->SetColorWeights(0, kRGBtoGrayscaleColorWeights);
result->SetChainProperties(stage.scale_from, stage.scale_to, swizzle);
return std::move(result);
}
std::unique_ptr<GLHelper::ScalerInterface>
GLHelperScaling::CreateI420Planerizer(int plane,
bool flipped_source,
bool flip_output,
bool swizzle) {
const ScalerStage stage = {
SHADER_PLANAR,
plane == 0 ? gfx::Vector2d(4, 1) : gfx::Vector2d(8, 2),
gfx::Vector2d(1, 1),
true,
flipped_source,
flip_output,
swizzle};
auto result = std::make_unique<ScalerImpl>(gl_, this, stage, nullptr);
switch (plane) {
case 0:
result->SetColorWeights(0, kRGBtoYColorWeights);
break;
case 1:
result->SetColorWeights(0, kRGBtoUColorWeights);
break;
case 2:
result->SetColorWeights(0, kRGBtoVColorWeights);
break;
default:
NOTREACHED();
}
result->SetChainProperties(stage.scale_from, stage.scale_to, swizzle);
return std::move(result);
}
std::unique_ptr<GLHelper::ScalerInterface>
GLHelperScaling::CreateI420MrtPass1Planerizer(bool flipped_source,
bool flip_output,
bool swizzle) {
const ScalerStage stage = {SHADER_YUV_MRT_PASS1,
gfx::Vector2d(4, 1),
gfx::Vector2d(1, 1),
true,
flipped_source,
flip_output,
swizzle};
auto result = std::make_unique<ScalerImpl>(gl_, this, stage, nullptr);
result->SetColorWeights(0, kRGBtoYColorWeights);
result->SetColorWeights(1, kRGBtoUColorWeights);
result->SetColorWeights(2, kRGBtoVColorWeights);
result->SetChainProperties(stage.scale_from, stage.scale_to, swizzle);
return std::move(result);
}
std::unique_ptr<GLHelper::ScalerInterface>
GLHelperScaling::CreateI420MrtPass2Planerizer(bool swizzle) {
const ScalerStage stage = {SHADER_YUV_MRT_PASS2,
gfx::Vector2d(2, 2),
gfx::Vector2d(1, 1),
true,
false,
false,
swizzle};
auto result = std::make_unique<ScalerImpl>(gl_, this, stage, nullptr);
result->SetChainProperties(stage.scale_from, stage.scale_to, swizzle);
return std::move(result);
}
// Triangle strip coordinates, used to sweep the entire source area when
// executing the shader programs. The first two columns correspond to
// values interpolated to produce |a_position| values in the shader programs,
// while the latter two columns relate to the |a_texcoord| values; respectively,
// the first pair are the vertex coordinates in object space, and the second
// pair are the corresponding source texture coordinates.
const GLfloat GLHelperScaling::kVertexAttributes[] = {
-1.0f, -1.0f, 0.0f, 0.0f, // vertex 0
1.0f, -1.0f, 1.0f, 0.0f, // vertex 1
-1.0f, 1.0f, 0.0f, 1.0f, // vertex 2
1.0f, 1.0f, 1.0f, 1.0f,
}; // vertex 3
void GLHelperScaling::InitBuffer() {
ScopedBufferBinder<GL_ARRAY_BUFFER> buffer_binder(gl_,
vertex_attributes_buffer_);
gl_->BufferData(GL_ARRAY_BUFFER, sizeof(kVertexAttributes), kVertexAttributes,
GL_STATIC_DRAW);
}
scoped_refptr<ShaderProgram> GLHelperScaling::GetShaderProgram(ShaderType type,
bool swizzle) {
ShaderProgramKeyType key(type, swizzle);
scoped_refptr<ShaderProgram>& cache_entry(shader_programs_[key]);
if (!cache_entry) {
cache_entry = new ShaderProgram(gl_, helper_, type);
std::basic_string<GLchar> vertex_program;
std::basic_string<GLchar> fragment_program;
std::basic_string<GLchar> vertex_header;
std::basic_string<GLchar> fragment_directives;
std::basic_string<GLchar> fragment_header;
std::basic_string<GLchar> shared_variables;
vertex_header.append(
"precision highp float;\n"
"attribute vec2 a_position;\n"
"attribute vec2 a_texcoord;\n"
"uniform vec4 src_rect;\n");
fragment_header.append(
"precision mediump float;\n"
"uniform sampler2D s_texture;\n");
vertex_program.append(
" gl_Position = vec4(a_position, 0.0, 1.0);\n"
" vec2 texcoord = src_rect.xy + a_texcoord * src_rect.zw;\n");
switch (type) {
case SHADER_BILINEAR:
shared_variables.append("varying vec2 v_texcoord;\n");
vertex_program.append(" v_texcoord = texcoord;\n");
fragment_program.append(
" gl_FragColor = texture2D(s_texture, v_texcoord);\n");
break;
case SHADER_BILINEAR2:
// This is equivialent to two passes of the BILINEAR shader above.
// It can be used to scale an image down 1.0x-2.0x in either dimension,
// or exactly 4x.
shared_variables.append(
"varying vec4 v_texcoords;\n"); // 2 texcoords packed in one quad
vertex_header.append("uniform vec2 scaling_vector;\n");
vertex_program.append(
" vec2 step = scaling_vector / 4.0;\n"
" v_texcoords.xy = texcoord + step;\n"
" v_texcoords.zw = texcoord - step;\n");
fragment_program.append(
" gl_FragColor = (texture2D(s_texture, v_texcoords.xy) +\n"
" texture2D(s_texture, v_texcoords.zw)) / 2.0;\n");
break;
case SHADER_BILINEAR3:
// This is kind of like doing 1.5 passes of the BILINEAR shader.
// It can be used to scale an image down 1.5x-3.0x, or exactly 6x.
shared_variables.append(
"varying vec4 v_texcoords1;\n" // 2 texcoords packed in one quad
"varying vec2 v_texcoords2;\n");
vertex_header.append("uniform vec2 scaling_vector;\n");
vertex_program.append(
" vec2 step = scaling_vector / 3.0;\n"
" v_texcoords1.xy = texcoord + step;\n"
" v_texcoords1.zw = texcoord;\n"
" v_texcoords2 = texcoord - step;\n");
fragment_program.append(
" gl_FragColor = (texture2D(s_texture, v_texcoords1.xy) +\n"
" texture2D(s_texture, v_texcoords1.zw) +\n"
" texture2D(s_texture, v_texcoords2)) / 3.0;\n");
break;
case SHADER_BILINEAR4:
// This is equivialent to three passes of the BILINEAR shader above,
// It can be used to scale an image down 2.0x-4.0x or exactly 8x.
shared_variables.append("varying vec4 v_texcoords[2];\n");
vertex_header.append("uniform vec2 scaling_vector;\n");
vertex_program.append(
" vec2 step = scaling_vector / 8.0;\n"
" v_texcoords[0].xy = texcoord - step * 3.0;\n"
" v_texcoords[0].zw = texcoord - step;\n"
" v_texcoords[1].xy = texcoord + step;\n"
" v_texcoords[1].zw = texcoord + step * 3.0;\n");
fragment_program.append(
" gl_FragColor = (\n"
" texture2D(s_texture, v_texcoords[0].xy) +\n"
" texture2D(s_texture, v_texcoords[0].zw) +\n"
" texture2D(s_texture, v_texcoords[1].xy) +\n"
" texture2D(s_texture, v_texcoords[1].zw)) / 4.0;\n");
break;
case SHADER_BILINEAR2X2:
// This is equivialent to four passes of the BILINEAR shader above.
// Two in each dimension. It can be used to scale an image down
// 1.0x-2.0x in both X and Y directions. Or, it could be used to
// scale an image down by exactly 4x in both dimensions.
shared_variables.append("varying vec4 v_texcoords[2];\n");
vertex_header.append("uniform vec2 scaling_vector;\n");
vertex_program.append(
" vec2 step = scaling_vector / 4.0;\n"
" v_texcoords[0].xy = texcoord + vec2(step.x, step.y);\n"
" v_texcoords[0].zw = texcoord + vec2(step.x, -step.y);\n"
" v_texcoords[1].xy = texcoord + vec2(-step.x, step.y);\n"
" v_texcoords[1].zw = texcoord + vec2(-step.x, -step.y);\n");
fragment_program.append(
" gl_FragColor = (\n"
" texture2D(s_texture, v_texcoords[0].xy) +\n"
" texture2D(s_texture, v_texcoords[0].zw) +\n"
" texture2D(s_texture, v_texcoords[1].xy) +\n"
" texture2D(s_texture, v_texcoords[1].zw)) / 4.0;\n");
break;
case SHADER_BICUBIC_HALF_1D:
// This scales down texture by exactly half in one dimension.
// directions in one pass. We use bilinear lookup to reduce
// the number of texture reads from 8 to 4
shared_variables.append(
"const float CenterDist = 99.0 / 140.0;\n"
"const float LobeDist = 11.0 / 4.0;\n"
"const float CenterWeight = 35.0 / 64.0;\n"
"const float LobeWeight = -3.0 / 64.0;\n"
"varying vec4 v_texcoords[2];\n");
vertex_header.append("uniform vec2 scaling_vector;\n");
vertex_program.append(
" vec2 step = scaling_vector / 2.0;\n"
" v_texcoords[0].xy = texcoord - LobeDist * step;\n"
" v_texcoords[0].zw = texcoord - CenterDist * step;\n"
" v_texcoords[1].xy = texcoord + CenterDist * step;\n"
" v_texcoords[1].zw = texcoord + LobeDist * step;\n");
fragment_program.append(
" gl_FragColor = \n"
// Lobe pixels
" (texture2D(s_texture, v_texcoords[0].xy) +\n"
" texture2D(s_texture, v_texcoords[1].zw)) *\n"
" LobeWeight +\n"
// Center pixels
" (texture2D(s_texture, v_texcoords[0].zw) +\n"
" texture2D(s_texture, v_texcoords[1].xy)) *\n"
" CenterWeight;\n");
break;
case SHADER_BICUBIC_UPSCALE:
// When scaling up, we need 4 texture reads, but we can
// save some instructions because will know in which range of
// the bicubic function each call call to the bicubic function
// will be in.
// Also, when sampling the bicubic function like this, the sum
// is always exactly one, so we can skip normalization as well.
shared_variables.append("varying vec2 v_texcoord;\n");
vertex_program.append(" v_texcoord = texcoord;\n");
fragment_header.append(
"uniform vec2 src_pixelsize;\n"
"uniform vec2 scaling_vector;\n"
"const float a = -0.5;\n"
// This function is equivialent to calling the bicubic
// function with x-1, x, 1-x and 2-x
// (assuming 0 <= x < 1)
"vec4 filt4(float x) {\n"
" return vec4(x * x * x, x * x, x, 1) *\n"
" mat4( a, -2.0 * a, a, 0.0,\n"
" a + 2.0, -a - 3.0, 0.0, 1.0,\n"
" -a - 2.0, 3.0 + 2.0 * a, -a, 0.0,\n"
" -a, a, 0.0, 0.0);\n"
"}\n"
"mat4 pixels_x(vec2 pos, vec2 step) {\n"
" return mat4(\n"
" texture2D(s_texture, pos - step),\n"
" texture2D(s_texture, pos),\n"
" texture2D(s_texture, pos + step),\n"
" texture2D(s_texture, pos + step * 2.0));\n"
"}\n");
fragment_program.append(
" vec2 pixel_pos = v_texcoord * src_pixelsize - \n"
" scaling_vector / 2.0;\n"
" float frac = fract(dot(pixel_pos, scaling_vector));\n"
" vec2 base = (floor(pixel_pos) + vec2(0.5)) / src_pixelsize;\n"
" vec2 step = scaling_vector / src_pixelsize;\n"
" gl_FragColor = pixels_x(base, step) * filt4(frac);\n");
break;
case SHADER_PLANAR:
// Converts four RGBA pixels into one pixel. Each RGBA
// pixel will be dot-multiplied with the color weights and
// then placed into a component of the output. This is used to
// convert RGBA textures into Y, U and V textures. We do this
// because single-component textures are not renderable on all
// architectures.
shared_variables.append("varying vec4 v_texcoords[2];\n");
vertex_header.append("uniform vec2 scaling_vector;\n");
vertex_program.append(
" vec2 step = scaling_vector / 4.0;\n"
" v_texcoords[0].xy = texcoord - step * 1.5;\n"
" v_texcoords[0].zw = texcoord - step * 0.5;\n"
" v_texcoords[1].xy = texcoord + step * 0.5;\n"
" v_texcoords[1].zw = texcoord + step * 1.5;\n");
fragment_header.append("uniform vec4 rgb_to_plane0;\n");
fragment_program.append(
" gl_FragColor = rgb_to_plane0 * mat4(\n"
" vec4(texture2D(s_texture, v_texcoords[0].xy).rgb, 1.0),\n"
" vec4(texture2D(s_texture, v_texcoords[0].zw).rgb, 1.0),\n"
" vec4(texture2D(s_texture, v_texcoords[1].xy).rgb, 1.0),\n"
" vec4(texture2D(s_texture, v_texcoords[1].zw).rgb, 1.0));\n");
break;
case SHADER_YUV_MRT_PASS1:
// RGB24 to YV12 in two passes; writing two 8888 targets each pass.
//
// YV12 is full-resolution luma and half-resolution blue/red chroma.
//
// (original)
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// |
// | (y plane) (temporary)
// | YYYY YYYY UUVV UUVV
// +--> { YYYY YYYY + UUVV UUVV }
// YYYY YYYY UUVV UUVV
// First YYYY YYYY UUVV UUVV
// pass YYYY YYYY UUVV UUVV
// YYYY YYYY UUVV UUVV
// |
// | (u plane) (v plane)
// Second | UUUU VVVV
// pass +--> { UUUU + VVVV }
// UUUU VVVV
//
shared_variables.append("varying vec4 v_texcoords[2];\n");
vertex_header.append("uniform vec2 scaling_vector;\n");
vertex_program.append(
" vec2 step = scaling_vector / 4.0;\n"
" v_texcoords[0].xy = texcoord - step * 1.5;\n"
" v_texcoords[0].zw = texcoord - step * 0.5;\n"
" v_texcoords[1].xy = texcoord + step * 0.5;\n"
" v_texcoords[1].zw = texcoord + step * 1.5;\n");
fragment_directives.append("#extension GL_EXT_draw_buffers : enable\n");
fragment_header.append(
"uniform vec4 rgb_to_plane0;\n" // RGB-to-Y
"uniform vec4 rgb_to_plane1;\n" // RGB-to-U
"uniform vec4 rgb_to_plane2;\n"); // RGB-to-V
fragment_program.append(
" vec4 pixel1 = vec4(texture2D(s_texture, v_texcoords[0].xy).rgb, "
" 1.0);\n"
" vec4 pixel2 = vec4(texture2D(s_texture, v_texcoords[0].zw).rgb, "
" 1.0);\n"
" vec4 pixel3 = vec4(texture2D(s_texture, v_texcoords[1].xy).rgb, "
" 1.0);\n"
" vec4 pixel4 = vec4(texture2D(s_texture, v_texcoords[1].zw).rgb, "
" 1.0);\n"
" vec4 pixel12 = (pixel1 + pixel2) / 2.0;\n"
" vec4 pixel34 = (pixel3 + pixel4) / 2.0;\n"
" gl_FragData[0] = vec4(dot(pixel1, rgb_to_plane0),\n"
" dot(pixel2, rgb_to_plane0),\n"
" dot(pixel3, rgb_to_plane0),\n"
" dot(pixel4, rgb_to_plane0));\n"
" gl_FragData[1] = vec4(dot(pixel12, rgb_to_plane1),\n"
" dot(pixel34, rgb_to_plane1),\n"
" dot(pixel12, rgb_to_plane2),\n"
" dot(pixel34, rgb_to_plane2));\n");
break;
case SHADER_YUV_MRT_PASS2:
// We're just sampling two pixels and unswizzling them. There's
// no need to do vertical scaling with math, since bilinear
// interpolation in the sampler takes care of that.
shared_variables.append("varying vec4 v_texcoords;\n");
vertex_header.append("uniform vec2 scaling_vector;\n");
vertex_program.append(
" vec2 step = scaling_vector / 2.0;\n"
" v_texcoords.xy = texcoord - step * 0.5;\n"
" v_texcoords.zw = texcoord + step * 0.5;\n");
fragment_directives.append("#extension GL_EXT_draw_buffers : enable\n");
fragment_program.append(
" vec4 lo_uuvv = texture2D(s_texture, v_texcoords.xy);\n"
" vec4 hi_uuvv = texture2D(s_texture, v_texcoords.zw);\n"
" gl_FragData[0] = vec4(lo_uuvv.rg, hi_uuvv.rg);\n"
" gl_FragData[1] = vec4(lo_uuvv.ba, hi_uuvv.ba);\n");
break;
}
if (swizzle) {
switch (type) {
case SHADER_YUV_MRT_PASS1:
fragment_program.append(" gl_FragData[0] = gl_FragData[0].bgra;\n");
break;
case SHADER_YUV_MRT_PASS2:
fragment_program.append(" gl_FragData[0] = gl_FragData[0].bgra;\n");
fragment_program.append(" gl_FragData[1] = gl_FragData[1].bgra;\n");
break;
default:
fragment_program.append(" gl_FragColor = gl_FragColor.bgra;\n");
break;
}
}
vertex_program = vertex_header + shared_variables + "void main() {\n" +
vertex_program + "}\n";
fragment_program = fragment_directives + fragment_header +
shared_variables + "void main() {\n" + fragment_program +
"}\n";
cache_entry->Setup(vertex_program.c_str(), fragment_program.c_str());
}
return cache_entry;
}
namespace {
GLuint CompileShaderFromSource(GLES2Interface* gl,
const GLchar* source,
GLenum type) {
GLuint shader = gl->CreateShader(type);
GLint length = base::checked_cast<GLint>(strlen(source));
gl->ShaderSource(shader, 1, &source, &length);
gl->CompileShader(shader);
GLint compile_status = 0;
gl->GetShaderiv(shader, GL_COMPILE_STATUS, &compile_status);
if (!compile_status) {
GLint log_length = 0;
gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
if (log_length) {
auto log = base::HeapArray<GLchar>::Uninit(log_length);
GLsizei returned_log_length = 0;
gl->GetShaderInfoLog(shader, log_length, &returned_log_length,
log.data());
LOG(ERROR) << std::string(log.begin(), log.begin() + returned_log_length);
}
gl->DeleteShader(shader);
return 0;
}
return shader;
}
} // namespace
void ShaderProgram::Setup(const GLchar* vertex_shader_text,
const GLchar* fragment_shader_text) {
// Shaders to map the source texture to |dst_texture_|.
const GLuint vertex_shader =
CompileShaderFromSource(gl_, vertex_shader_text, GL_VERTEX_SHADER);
if (vertex_shader == 0)
return;
gl_->AttachShader(program_, vertex_shader);
gl_->DeleteShader(vertex_shader);
const GLuint fragment_shader =
CompileShaderFromSource(gl_, fragment_shader_text, GL_FRAGMENT_SHADER);
if (fragment_shader == 0)
return;
gl_->AttachShader(program_, fragment_shader);
gl_->DeleteShader(fragment_shader);
gl_->LinkProgram(program_);
GLint link_status = 0;
gl_->GetProgramiv(program_, GL_LINK_STATUS, &link_status);
if (!link_status)
return;
position_location_ = gl_->GetAttribLocation(program_, "a_position");
texcoord_location_ = gl_->GetAttribLocation(program_, "a_texcoord");
texture_location_ = gl_->GetUniformLocation(program_, "s_texture");
src_rect_location_ = gl_->GetUniformLocation(program_, "src_rect");
src_pixelsize_location_ = gl_->GetUniformLocation(program_, "src_pixelsize");
scaling_vector_location_ =
gl_->GetUniformLocation(program_, "scaling_vector");
rgb_to_plane0_location_ = gl_->GetUniformLocation(program_, "rgb_to_plane0");
rgb_to_plane1_location_ = gl_->GetUniformLocation(program_, "rgb_to_plane1");
rgb_to_plane2_location_ = gl_->GetUniformLocation(program_, "rgb_to_plane2");
// The only reason fetching these attribute locations should fail is
// if the context was spontaneously lost (i.e., because the GPU
// process crashed, perhaps deliberately for testing).
DCHECK(Initialized() || gl_->GetGraphicsResetStatusKHR() != GL_NO_ERROR);
}
void ShaderProgram::UseProgram(const gfx::Size& src_texture_size,
const gfx::RectF& src_rect,
const gfx::Size& dst_size,
bool scale_x,
bool flip_y,
const GLfloat color_weights[3][4]) {
gl_->UseProgram(program_);
// OpenGL defines the last parameter to VertexAttribPointer as type
// "const GLvoid*" even though it is actually an offset into the buffer
// object's data store and not a pointer to the client's address space.
const void* offsets[2] = {nullptr,
reinterpret_cast<const void*>(2 * sizeof(GLfloat))};
gl_->VertexAttribPointer(position_location_, 2, GL_FLOAT, GL_FALSE,
4 * sizeof(GLfloat), offsets[0]);
gl_->EnableVertexAttribArray(position_location_);
gl_->VertexAttribPointer(texcoord_location_, 2, GL_FLOAT, GL_FALSE,
4 * sizeof(GLfloat), offsets[1]);
gl_->EnableVertexAttribArray(texcoord_location_);
gl_->Uniform1i(texture_location_, 0);
// Convert |src_rect| from pixel coordinates to texture coordinates. The
// source texture coordinates are in the range [0.0,1.0] for each dimension,
// but the sampling rect may slightly "spill" outside that range (e.g., for
// scaler overscan).
GLfloat src_rect_texcoord[4] = {
src_rect.x() / src_texture_size.width(),
src_rect.y() / src_texture_size.height(),
src_rect.width() / src_texture_size.width(),
src_rect.height() / src_texture_size.height(),
};
if (flip_y) {
src_rect_texcoord[1] += src_rect_texcoord[3];
src_rect_texcoord[3] *= -1.0f;
}
gl_->Uniform4fv(src_rect_location_, 1, src_rect_texcoord);
// Set shader-specific uniform inputs. The |scaling_vector| is the ratio of
// the number of source pixels sampled per dest pixels output. It is used by
// the shader programs to locate distinct texels from the source texture, and
// sample them at the appropriate offset to produce each output texel. In many
// cases, |scaling_vector| also selects whether scaling will happen only in
// the X or the Y dimension.
switch (shader_) {
case GLHelperScaling::SHADER_BILINEAR:
break;
case GLHelperScaling::SHADER_BILINEAR2:
case GLHelperScaling::SHADER_BILINEAR3:
case GLHelperScaling::SHADER_BILINEAR4:
case GLHelperScaling::SHADER_BICUBIC_HALF_1D:
case GLHelperScaling::SHADER_PLANAR:
case GLHelperScaling::SHADER_YUV_MRT_PASS1:
case GLHelperScaling::SHADER_YUV_MRT_PASS2:
if (scale_x) {
gl_->Uniform2f(scaling_vector_location_,
src_rect_texcoord[2] / dst_size.width(), 0.0);
} else {
gl_->Uniform2f(scaling_vector_location_, 0.0,
src_rect_texcoord[3] / dst_size.height());
}
break;
case GLHelperScaling::SHADER_BILINEAR2X2:
gl_->Uniform2f(scaling_vector_location_,
src_rect_texcoord[2] / dst_size.width(),
src_rect_texcoord[3] / dst_size.height());
break;
case GLHelperScaling::SHADER_BICUBIC_UPSCALE:
gl_->Uniform2f(src_pixelsize_location_, src_texture_size.width(),
src_texture_size.height());
// For this shader program, the |scaling_vector| has an alternate meaning:
// It is only being used to select whether sampling is stepped in the X or
// the Y direction.
gl_->Uniform2f(scaling_vector_location_, scale_x ? 1.0 : 0.0,
scale_x ? 0.0 : 1.0);
break;
}
if (rgb_to_plane0_location_ != -1) {
gl_->Uniform4fv(rgb_to_plane0_location_, 1, &color_weights[0][0]);
if (rgb_to_plane1_location_ != -1) {
DCHECK_NE(rgb_to_plane2_location_, -1);
gl_->Uniform4fv(rgb_to_plane1_location_, 1, &color_weights[1][0]);
gl_->Uniform4fv(rgb_to_plane2_location_, 1, &color_weights[2][0]);
}
}
}
} // namespace gpu
|